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SECTION I

IN TRODUC TION

This report contains the results of the first five months of effort on a study

aimed at_he investigation of the use of associative memories in unmanned

space vehicles in the 1 975 to 1 985 time period._It is assumed that unmanned

planetary exploration will require computation of a type and extent not pre-

viously provided in aero-space vehicles. This is partially due to the fact that

the vehicle is operating in an unknown environment with a limited earth-

vehicle communications link.

Associative memories with their search capabilities have in the past been

proposed primarily for non-numerical tasks such as information retrieval.

However, associative memories capable of processing operations as well as

search operations can be applied effectively to a much wider class of prob-

lems. They are applicable to problems of the type requiring not only table

look-up operations, but also processing operations of the type where the

same operation is being carried out over a large set of operands. It is felt

that these capabilities justify the investigation of associative techniques for

use in a sopi_isticated on-board computing facility.

The study is divided into five tasks as shown in the diagram below:

12017 IRl



1-2

Work to date has been on the first three tasks of the study. Tasks 1 and 2 are

completed and Task 3 is partially completed.

The results of Task 1, the Definition of the Space Exploration Computation

Requirements, are presented in Appendix A. A summary of these results is

contained in Section II of the report. Four of the major computational func-

tions have been defined and a number of conclusions regarding fruitful areas

of application of associative techniques are given.

Task 2 was performed as two essentially independent subtasks. One was a

survey of associative memory organizational approaches, and the other was

a survey of devices suitable for use in associative memories. The organiza-

tional approach survey is included as Section III of the report. Definitions

concerning both the organization and capabilities of an associative memory

are given. Five basic organizational approaches along with a number of var-

iations are described in terms of their capabilities to perform search and

processing operations. The devices suitable for mechanization of each of

these approaches are discussed. The device survey subtask, is included as

Appendix B of this report. This appendix contains a description of all de-

vices with a memory capability felt to be suitable for use in future associative

memories.

In Task 3, the results of Task 1 were evaluated and studied to determine

promising areas of application and general capability requirements for as-

sociative memories. Five areas of applications have been singled out for

further investigation. One of these, the use of an associative memory for

incremental computations has been completed and is discussed in Section IV.

Also included in Section IV is a brief discussion of some considerations in

the organization of an ultra-reliable associative memory.

Section V contains a summary of the results obtained thus far and an outline

of the work to be completed on the remainder of the study program.

12017 IR1
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SE C TION II

SUMMARY OF SPACE EXPLORATION COMPUTATION REQUIREMENTS

To evaluate the application of associative memories to future planetary ex-

ploration with unmanned vehicles, it was necessary to define the on-board

computation requirements. The time period of interest is from 1975 to 1 985.

While specific requirements are largely unknown at this time, general re-

quirements were determined and potential problem areas were identified.

Details of this work are included as Appendix A. A summary of the require-

ments and a discussion of conclusions are contained within this section.

COMPUTATION DESCRIPTORS

The approach to defining computational requirements was to describe each in

terms of a set of computation descriptors. The aim is to determine the form

of the computation rather than the details. The attempt was to use computa-

tion descriptors which are at least one level higher than operations such as

equality search, addition, multiplication, etc. A listing is contained in

Tables 2-1 and 2-2.

Table 2-1

Functions Descriptors

I

I

I

Ao Data Handling

1. Data Acquisition

a) Adaptive selection of scientific

instruments

b) Adaptive selection of perfor-

mance inputs

Simple decision making

Simple decision making

12017 IR1
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I
I

I

I

I

!B.

2-2

Table 2-1 (Continued)

Functions

c) Adaptive sampling of scientific data

d) Adaptive sampling of performance
data

e) System status monitoring

f) Dynamics range adjustment

g) Conversion from analog to digital

. Storage and Related Control Require-
ments

a) Data storage

b) Storage allocation

c) Data retrieval

3. Data Distribution

Processing of Scientific Data

1. Data compression

a) Encoding methods

1 ) A modulation

2) Debiasing

3) Interval suppression

4) Code substitution

b) Filtering methods

-, _.-_ _ representation

a) Quantiles

Descriptors

Simultaneous arithmetic

Simultaneous comparisons

Simultaneous arithmetic

Simultaneous comparisons

Simultaneous arithmetic

Simultaneous comparisons

Simultaneous comparisons

Searching

Simple Decision Making

Matrix subtraction

Simultaneous comparisons
Simultaneous arithmetic

Simultaneous comparisons

Simultaneous comparisons

Simultaneous comparisons
Sequential arithmetic

1 2017 IR1
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Table 2-1 (Continued)

Functions

b)

c)

Direct computation of
mo ments

Direct Approximation of

the Probability Density
Function

2) Curve fitting

a) Interpolators

"L_ T "

c) Least squares

.

3) Correlation

4) Feature oriented techniques

On-board Decision Making

a) Composition analysis

.

b) Picture processing

1 ) Contrast comparisons

2) Operator techniques

c) Other situations

1) Allocation of Resources

2) Task Scheduling

Miscellaneous Data Processing

a) Side looking radar

12017 IR1

Descriptors

Sum of Products

Simultaneous arithmetic

Polynomial evaluation
Simultaneous arithmetic

¢"_2 ..... 1_. _ ._'m m.

_,multail_uu_ arzmmeuc
Matrix inversion

Sum of Products
Matrix inversion

Sum of Products

Sum of Products

Sum of Products

Sequential arithmetic
Sequential comparisons

Simultaneous arithmetic

Simultaneous comparisons

Sum of Products

Simultaneous arithmetic 6
Sum of Products {4 x 10

multiplications / se c. )
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CONCLUSIONS

The use of computation descriptors to describe the requirements was only

partially successful. It can be seen that a large portion of the computation had

to be described in terms of more basic descriptors than intended. Howeverj

some general conclusions can be drawn:

i)

2)

The most frequently used descriptor is the sum of products compu-

tation. This is particularly true when realizing that some of the

other descriptors, such as matrix multiplication and polynominal

evaluation, also involve a sum of products computation. The sum-

mation operation is somewhat difficult for conventional associative

memories and should be given some attention.

The data handling function, particularly that of data acquisition, ap-

pears to have requirements which naturally fit the capabilities of an

associative memory. An associative controller would provide the de-

sired adaptive sampling capability as well as flexibility in scheduling

and controlling the sensors.

3) Data compression is probably one of the most pressing tasks of the

on-board computer system. While compression of pictures would

provide the most significant gain, compression techniques can be

applied to other data sets as well. In view of the importance of this

task, it might be feasible to consider the availability of a library of

encoding and filtering methods. For each data set under considera-

tion a number of currently preferred combinations of filters and

encoders could be applied. The separate results could then be evalu-

ated on the basis of the number of bits needed to represent the data

set. The list of preferred encoders and filters might then be modi-

fied to reflect the successes and failures.

12017 IR1
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4)

5)

6)

2-7

The incremental computation required for navigation and control of

the lander vehicle represents a type of arithmetic to which associa-

tive memories are applicable. It is also significant that this compu-

tation is required for a relatively short period; thus it is desirable

that this task be performed by something other than special purpose

hardw are.

In general the desirability of adaptivity in the computing facility is

evident. The computer should have freedom to alter its own pro-

cessing schedule. This would include saving data for later proces-

sing, changing priority of the various experiments to accomodate

the relative information rates, and modifying the various processing

techniques according to the work load.

The reliability requirements on the computing facility of a space

vehicle are severe, particularly if the facility is in any way central-

ized.

1 201 7 !R1
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SECTION III

A SURVEY OF ASSOCIATIVE MEMORY ORGANIZATIONAL APPROACHES

INT RODUCTION

The associative memory concept was first described by Slade lin 1956. Since

then many papers have been written on the subject with terms such as content

addressable memory and search memory being used almost as frequently as

associative memory. Also, varying definitions have been used in describing

such memories. Therefore an appropriate starting place for this survey of

associative memory organizational approaches is in the area of definitions.

First an associative memory is defined as a device having the capabilities

of storing binary words and of carrying out a set of operations on these

words. A significant part of the definition is that the operations are performed

simultaneously over all words.

The term "cell" will be used to refer to the logic-storage device which has

as a minimum the capability of storing a single bit of information. It may

include, however, a logic performing capability that can vary from the

EXCLUSIVE-OR operation to that of a full adder. Thus an n word, m bit

per word, associative memory will contain an m x n array of cells.

Figure 3-1 indicates the basic parts of an associative memory and the in-

formation flow during search operations. In general terms, the search word

is applied through a mask register to the memory array where a comparison
is performed simultaneously with each stored word. The results of the com-

parison are transmitted on a per word basis to the Results Register. Masking

of selected bits of the _rch word is handled through use of a mask register.

Words can also be masked out of a search by either assuring that a mismatch

will occur or by blocking the output from the masked word.
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i

I

I

I

I

i

I

I

WORD 1

WORD 2
I
I

I
I

I
I

I
I

WORD n

OPERAND REGISTER I

MASK REGISTER

CELL CELL !CELL
1 2 m

nxm

ARRAY OF CELLS

I 1 i

RESULTS

STORE

I

1
OUTPUT

Figure 3-1. Functional Block Diagram
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The terms bit slice and word slice are used to describe the read, write,

and processing modes of operation. Referring to the block diagram

{Figure 3-1), a word slice is simply a single m-bit word, while a bit

slice is a slice one bit wide in the vertical direction. The i th bit slice

therefore would contain the i TM bit of each word in the memory.

The operations performed by an associative memory can be divided into

search operations and processing operations. The difference is that

processing operations in some way change the contents of the memory,

while the search operations do not.

A number of the basic search operations normally performed in an

associative memory are defined below. Searches performed as the

intersection or union of basic searches are also described. To simplify

the description of the operations, all numbers are assumed to be positive.

Negative numbers can be handled in most cases with little difficulty.

The algorithms for these searches are normally quite dependent on the

organizational approach and are therefore described in a later section.

In each case, performance of the search operation will identify a set of

words. The next step is to either readout the identified set, generate

the address of the identified set, or generate a count of the number of

words in the set.

BASIC SEARCHES

Equality Search

The equality search is the operation of finding all stored words which are

equal to the search word in all -- -'--_ positions • _.,_,11.. •umna_u . _u_,_,,_j this opera-

tion can be defined as follows where X is a stored word and S is the search

word:

12017 IRI
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X = S if and only if the following Boolean equation is
satisfied

m
V (x i s-i +Xi si)
i=l

=o

or alternatively the equivalent equation

m

(x. s. +x. s.) : 1
i:l 1 1 1 I

m m

is satisfied where V and A denote the logical sum and logical product
i=l i=l

of m terms, respectively.

Inequality Search

The inequality search is that operation of ffnding those stored words X which

are greater-than or of finding those which are less-than the search word S.

The inequality search can be expressed logically as follows:

X_Sif and only if X d = 1 and S d = 0

where the d th bit is the most significant bit in which X i S..

1

X_ S if and only if X d

where the d th bit is defined as above.

= 0 and S d = 1

Maximum (minimum) Search

This search operation is that of finding the stored word having the largest

(smallest) magnitude.

12017 IR1
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Proximity Search

The proximity search is defined as the operation of finding the stored word

that comes closest to matching the search word in terms of the number of

matching bits. It is possible that such a search could be mechanized as a

basic operation; however in all the approaches to be described the proximity

search is performed by doing an equality search on each bit, count the number

of mismatches, and perform a minimum search on the contents of the counters.

Intersection of Searches

The intersection of two or more sets of words, each of which satisfies a

basic search, is simply that set of words common to all the basic sets. This

is equivalent to a logical AND of basic searches. The most straightforward

way of performing the intersection of searches is to use the results of the

first search as the input set to the next search. Assuming that the inter-

section of searches is performed in this manner, the composition of searches,

in which the order of performing the searches is important, will be included

in this category.

Two familiar searches which are normally performed as an intersection of

searches are described below.

Between Limits Search

This search can be performed as the intersection of two inequality searches.

Using a "lower limit" as the search word, a greater-than search is performed

first to identify the set of words greater than the lower limit. Then with the

upper limit serving as the search word, a less-than search is performed to

identify the set of words less than the upper limit. The intersection of these

two sets is the desired output set.

12017 IR1
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Next Larger (smaller) Search

This operation is to find that word in memory which is closest in magnitude

to the search word with the additional stipulation that it be greater-than (less-

than) the search word. This operation is performed by first using the inequality

search to find all words greater-than (less-than) the search word and then,

using that set as the input set, performing a minimum (maximum) search to

find the next larger (smaller) word.

Union of Searches

The union is that set of words satisfying one or more of a number of searches.

This is equivalent to a logic OR of basic searches.

PROCESSING OPERATIONS

A number of processing operations are now described. Recall that the purpose

of these operations is to alter all or part of the contents of the memory.

Addition (X 1 + S, X 2 + S, , X n + S)

This operation results in the addition of a quantity S located in the operand

register to a set of stored quantities X, where each X is stored in a different

word of the memory. The result either replaces the stored quantity or is

stored in another field of each word involved in the operation.

12017 IRI



I" 3-7

Fiel__dAdditio_______n(X__l_+_YI'_X___22:Y___22'_ '_ X__n I Yn2

I stored in
This type of addition involves two quantities the same word of the

memory. The quantity X is to be added to the quantity Y in each word and

I the result is to be written back to replace either X or Y or to be stored in athird field.

I

l Summation (X 1 + X 2 + X 3 + ...... + X n)

In this case it is desired to produce the summation of a set of quantities

X stored in separate words of the memory. The result may either be
written into one of the words or placed in an external register.

I
Counting (X 1 + 1, X 2 + 1, X a + 1, - ..... , X n + 1)

The desired capability is that of simultaneously incrementing (or decrementing)

a set of quantities stored in separate words of the memory. It can be seen

that this is actually a special case of the first type of add operation.

I Shifting

i This is simply the operation of simultaneously shifting a selected set of

quantities which are located in the same field of different words.

I Complementing (X 1 -,. XI' X2_*X2' - ..... Xn'* Xn )

is that ofThis operation simultaneously replacing each quantity X by it¢

complement X.

12017 IR1
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Logical Sum- (X 1 L)S, X 2 LJ S,- ..... X n U S)

The logical sum is a bit-by-bit OR'ing of the contents S of the operand

register with the stored quantities X. The result is stored either in a

second field of each word of in place of X.

Logical Product {X 1 FI S, X 2 fl S, X N S)n

The logical product operation is a bit-by-bit AND of the contents S of the

operand register and the stored quantities X. The result is stored either

in a second field of each word or in place of v-g_e

Floating Point Add

Floating point operations can also be performed in an associalgv_e memory

by using a combination search and processing operation. Since the

algorithm used is the same regardless of the organizational approach, a

portion of it is described here.

Normalizing a floating point quantity is one of the more difficult and time

consuming tasks required in floating point arithmetic. Assume a floating

point number made up of a 15 bit fraction F and an exponent C. Each

word also has a scratch pad portion W_-ch in this oper_ation is used to :store

the "shift count"

Cycle 1

Search for 8 leading zeros in F. In all words satisfying the search,

shift F eight positions to the left and write a 1 in the fourth bit

position (23) of the shift counter.

12017 IR1
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Cycle 2

Search for 4 leading zeros in F. In those wGrds satisfying the

search, shift F four positions to the left and write a 1 in the third

bit position of the shift counter.

Cycle 3

Search for two leading zeros in F. In all words satisfying the

search, shift F two positions to the left and write a 1 in the

second bit position of the -_-'_* ..... +_"

Cycle 4

I
i

Search for one leading zero in F. In all words satisfying the

search, shift F one position to the left and write a 1 in the

least significant position of the shift counter.

Cycle 5

Subtract the content of the shift counter from the exponent C.

An associative memory which is capable of performing one or more of the

processing operations described above as well as the basic search operations

is commonly called an associative processor.

12017 iR1
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In this survey the basic method of categorizing associative memories is by

organizational approach. This is felt to be better than to survey by device

since the capability limitations of an associative memory depend primarily

on the method of organization.

The major differences in the organizational approaches to be described

are concerned with the capabilities of the cell, the writing capabilities,

and the external facitities provided on a per word basis. There are,

however, a number of variations, particularly in terms of the external

or peripheral facilities which have an identical effect on all organizational

approaches to be described. These variations and their effects on the

processing capabiiities of the _,_,_u_,,_"+_,"_ memory will...... he described in the

next section prior to the description of organizational approaches.

FACILITIES FOR STORAGE AND PROCESSING OF RESULTS

The Results Store (Figure 3-1)has been identified as the place where the

results of a search or arithmetic operation are stored and interpreted.

The facilities included in the Results Store can vary in many ways - the

storage capability may vary from a single bit to multiple bits of storage per

word; a shift (vertical in Figure 3-1 ) capability may or may not be in-

cluded; and special logic to determine such things as the number of l's

ina register may be included. The effects of some of these trade-offs are

highly dependent on the organizational approach. Examples of these are the

number of bits of external storage per word, and the comparison or pro-

cessing logic associated with each word. There are several trade-offs

to be made in this area, however, in which the effect on the cababilities is the

same regardless of the organizational approach. Thus these variations can

be discussed independent of the various organizational approaches to be

described later.

12017 IR1
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Shift Capability

If one of the registers in the Results Store has a shift capability (vertical

in Figure 3-1), interword searches can be performed. To illustrate the

need for such capabilities consider the situation where two words of the

associative memory are required to store the four fields A, B, C, and

D of an item.

ITEM 1

I1¥.M 2

WORD 1

WORD 2

WORD 3

WORD 4

OPERAND REGIS11_R

J A1

C !

Bi

D1

A2 B2

C2 02

RESULTS
STORE

------II

I I II I
I I
I l I

I I I

Assume there is a requirement to perform an equality search on fields

A and D. This must be done by first searching over the first field in all

odd numbered words and then shifting the results down one in the results

store. The second half of the search, which is over the second field, is

restricted to those even numbered words paired with odd numbered words

satisfying the first search.

It can be seen that the capability of shifting either up or down will effec-

tively give each word two nearest neighbors. Additional shift capabilities

or interconnections of register stages can be provided to give each word

four nearest neighbors. The array of words in this case can be pictured

as a two dimensional array which will naturally fit some problems better

than the one dimensional organization.

The usual one dimensional array and the two dimensional array are

illustrated on the following page
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i ._r_9- _ RESULTS
C,__,_ STORE

"

I
It should be kept in mind that there is no difference in the connectivity

of the words themselves but only in the Results Store.

I

I

I

I

Logic To Determine if at Least One Match

In order to carry out the maximum (minimum} search it is necessary to

know after the i th bit slice comparison {with a 1 (0) in the search register}

whether any of the words still being considered for maximum (minimum}

value has satisfied the search. This is needed since a decision must be

made regarding the set of words to be included in the i_-i TM bit slice com-

parison. If one or more words satisfied the ith bit slice comparison then
th

that set should be the input set for the i+l bit slice comparison. On the
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other hand if no words satisfied the i th comparison, the input set used

for the i th comparison should be retained for the i+l th comparison. Thus

the capability of determining if at least one match has occurred is

essential for the maximum (minimum) search.

Logic to Determine if Exactly One Match

The facility to determine if exactly one match exists is also useful for

the maximum (minimum) search. As the search proceeds from the most

significant end, if on the i th bit slice comparison only one word is found

to match the "1" (0} in the search register, then that word is the maximum

(minimum} value and the search can be stopped. This then will in some cases

allow a search to be terminated early, whereas without this faciiity the

search must continue through all bit slices.

I

I

I

I

I

I

I

Logic to Determine Exact Number of Matches

The facility for determining the exact number of matches resulting from

a search operation is useful for one of the processing operation described

in the previous section. The operation is addition where a summation of

many numbers in the associative memory is required 2. This can be done

by searching for l's in the least significant bit position of all words.

The number of 1 's is then added into an external parallel accumulator.

The next step is to search for l's in the second bit position of all words.

Again the number of l's is determined and is added into the accumulator

in a position one place to theleft of the previous step. This procedure is

continued through the most significant bit of the set, at which time the

summation of all the numbers is contained in the accumulator.

There are a number of applications which can utilize such a facility.

One example is library-type information retrieval where it may be desired
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to insert keywords until such a time that the number of items satisfying

the search is below some particular value. Another problem area where

such a facility is useful is in statistical analysis.

Word Select Ladder

A word select ladder is that logic which allows rapid sequential selection

of l's in the Results Store and thus words satisfying a search. This se -

quential selection is necessary if the words are to:be read out in a word

slice mode or if it is desired to generate an address for each word. In

the case where an address is desired, a two dimensional arrangement

of the Results Store will speed the process 3. In this case the Results

Store is arranged as a rectangular array. The address of a 1 in the

array is generated by identifying the column and the row to which it belongs.

12017IR1



3-15

ORGANIZATION APPROACHES

The organizational approaches described below have been selected as being

representative of a larger number of possible approaches. It is assumed

that in each case, all the peripheral facilities described in the previous sec-

tion are included unless it is specifically pointed out that they are excluded.

Each of the basic approaches is allowed to have variations that effect either

the list of devices applicable to the approach, or its capabilities to perform

one or more of the processing operations. One such variation which has an

effect on the device selection is common to all approaches and is discussed

here. This is concerned with the reading operations. All the approaches

described are assumed to have both bit slice and word slice reading capa-

bilities. Bit slice reading in most approaches can be obtained as a special

case of a bit slice comparison. Word slice reading, however, may or may

not be included. The absence of word slice reading does not directly effect

the processing capabilities, but it does limit the overall effectiveness of an

associative memory on some applications. Devices that are otherwise suit-

able but lack the capability of word slice reading are identified in the discus-

sion of mechanization considerations for each approach.

Approach 1 - Mirdmum Associative Memory

Description

This approach is considered the minimum associative memory because it

requires no local logic. All operations are carried out in a bit slice mode

with logic completely external to the memory plane. Thus the memory

plane is simply an array of memory elements and may be very much like

TI12017_R_
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a conventional random access memory depending on the peripheral hardware

A block diagram ofprovided, the Minimum Associative Memory is shown in

It can be notedFigure 3-2. that random access to a bit slice is provided by

decoding a bit address supplied by a controlling unit. Likewise a word address

decoder is provided to select a word for reading or writing through the input-

output register. An operand register and a mask register are provided with

their contents shifted serially to the External Logic in synchronism with the

bit slice readout of the memory plane for any of the search operations. The

temporary results which must be related from one bit slice to the next and

the final result of all search operations are stored in the Results Store. In

this approach, the final result will be converted to an address for use by the

controlling unit.

Capabilities

I Equality Search -- The equality search is performed by providing the con-tents of all stored words a bit slice at a time to the Compare Logic in syn-

chronism with the search word stored in the Operand Register. The Corn-

pare Logic associated with each word must perform the EXCLUSIVE-ORlogic function between each stored bit and the corresponding bit of the

search word. This logic might take on a form as shown below:

i COMPARE LOGIC RESULTSSTOffiE

i FROM OPERAND I ,

I RE I I

I lc o
_ I "
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Assume that initially all F/F's are set. Any mismatch between the search

word S and the stored word will cause the F/F to be cleared. Thus when the

search is completed, a F/F containing a 1 will correspond to a word equal to

the search word.

The time required to perform the equality search is equal to the number

of bits involved in the search times the time required to read a single

bit slice from the memory. The assumption is made that the operation

is limited by the speed of the memory plane rather than the Compare

Logic.

Inequality Search -- In this memory the inequality search must be performed

in the bit slice mode such as was described for the equality search. The re

are two algorithms which can be employed-- one starts from the least signi-

ficant end of the word, and the other starts from the most significant end.

The algorithm starting with the most significant end is probably the best

choice, however, since the maximum (minimum) search (described next)

must proceed from the most significant end. Thus this algorithm is des-

cribed below. The algorithm starting from the least significant end is des-

cribed in Approach 1 a, which is a variation of this approach.

The general description of this algorithm is taken from Reference 4.

Examine the most significant bit of the search word. If it is a 1, then all

words mismatching in that position are smaller and all those matching are

indeterminate. If the most significant bit is a 0, all words mismatching

are larger and thos matching are indeterminate. Repeat the above proced-

ure for successively less significant bits on those words that are still

indeterminate. When the operation is completed, the stored words will

have been separated into three sets - those larger than the search word,

those smaller than the search word, and those equal to the search word.
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It is important to point out that no additional logic is required on a per word

basis to carry out this operation. There is simply the requirement for a

decision to be made on the basis of the contents of the Results Store and the

contents of the current position of the search word. However an additional

bit of storage is required to store the results on those words on which a deci-

sion has been made. The logic and storage might be organized as shown

below:

COMPARE LOGIC

FROM OPERAND
REGISI_R

,.°-fMEMORY
PLANE x I

j RESULTSSTORE

J GATE FROM

CONTROL(IF SmO)
I a
I

I
J F/F A F/'FB

C 0 G 0

Assume that both A and B flip flops (F/F) are initially set. As in the Equality

search, any mismatch signal is used to clear the A F/F. The B F/F, on the

other hand, can be reset only by the mismatch condition of S = 0, X = 1.

Once a mismatch has occurred, the mismatch signals from subsequent bits

have no effect on either the A or B F/F's. When the operation is completed

the state of the two flip flops are interpreted as follows:

A__B.B Interpretation

11 Equality, X = S

10 Will not occur

01 Inequality, X < S

00 Inequality, X > S
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The time required to perform the inequality search in this approach is equal

to the number of bits involved in the search times the time required to read

a signal bit slice from the memory. Note that this is the same as the time

required to do the equality search since it can generally be assumed that the

limiting factor is the readout of the memory array rather than the external

operations.

Maximum (minimum} Search -- The maximum (minimum} search is the

operation that consists of finding the stored word having the largest (small-

est} magnitude. This search must proceed in a bit slice manner and must

start at the most significant end. It also has the somewhat unique character-

istic that there is a dependency between words. The results of each bit

slice comparison must be interpreted before the next step can proceed.

The operation is initiated by placing l's (O's} in all positions of the oper-

and register and comparing in the most significant bit position. The follow-

ing action is required:

If a match condition exists for only one word, that word is the

maximum and the operation is terminated.

If a match condition exists for more than one word, all words

receiving mismatch signals are deleted from further consider-

ation and the operation is repeated for the next bit.

If no match condition exists, all words are retained and the

operation is repeated for the next bit.

The operation is ended when the match condition exists for a single word

or when all bits have been compared. In the latter case more than one

word may contain the maximum value.

It can be recognized that there is a requirement for two bits of external

storage per word for this operation. The set of words still under
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consideration for maximum value at the s_art of each bit slice comparison

must be stored in two sets of F/F's. This is necessary in case the current
bit slice comparison results in no matches.

The logic and storage requirements are satisfied by the arrangement shown
below:

f
FROM MEMORY J _

1PLANE l X

GATE A TO B

Prior to each bit slice comparison both the A and B F/F's contain ]'s if

the corresponding word is still in consideration for maximum value. If

the i th bit slice comparison produces a mismatch the A F/F will be

cleared. The next step depends on the number of l's in the A register

(all A F/F's). If no l's exist, the "Gate B to A" signal is energized.

If at least one 1 exists in the A register, the "Gate A to B" signal is

energized. In either case the A and B F/F's will be the same prior to

the comparison of the next bit slice.

The time required to perform a maximum (minimum} search is somewhat

longer than that needed to do the equality and inequality searches. This is

because the external processing and decision making operations are assumed

to be more time consuming than the bit slice readout operations,

Proximity Search -- The proximity search cannot be performed in this

associative memory.
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Intersection of Searches -- The intersection of searches can be conveniently

performed in this memory by simply using the results of one search as the

input set to the second.

Union of Searches -- Only a restricted type of union of searches can be handled.

The only way it can be done is to transfer the results of the first search to the

second F/F associated with each word, perform the second search using only

the first F/F, and then logically OR the contents of the two F/F's. The re-

striction is that only the first search of a sequence of searches is allowed to

use both F/F's.

Processing Operations -- No processing operations are possible in t,hi_ or_,_,,

izational approach since there is no capability for writing a bit slice.

Me chaniz ation Conside rations

Requirements on the Device -- The fact that the cell in this associative memory

contains no logic makes it possible to mechanize it with a wide variety of

memory devices. The memory device must be capabie of a non-destructive

readout (NDRO) mode, however, since no bit write capability is provided for

re-writing after the bit slice has been read out for comparison purposes.

It can be noted in Figure 3-2 that reading of the memory device is required

in two directions so that both a bit slice and a word slice can be read from

the memory. Writing, however, occurs only by word slice.

Applicable Devices -- Many devices are capable of satisfying the require-

ments of this approach since these requirements are not very severe. Some

of these devices, however, have capabilities much greater than required

and would therefore not be competitive with the others in terms of size,

power consumption, or cost. Those that appear to match the requirements

most closely might be broadly classified as non-destructive readout
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magnetic devices although not all of these are readily applicable. Non-

destructive readout devices are required because the approach does not

specify a bit slice write capability and therefore anything that is read out

in the normal bit slice mode is lost if the readout is destructive. In this

approach the memory elements operate in the same manner as a conven-

tiorml coincident current or word arranged memory except for the additional

requirements of the interrogate circuits, sense lines, and sense amplifier

required to read out a bit slice.

Multi-Aperature Devices -- Biax cores, transfluxors, and other multi-

aperature devices provide a relatively simple NDRO mode of operation

and writing in memories employing these devices can be accomplished

in much the same way as in an ordinary core memory. The Biax ele-

ment has the important advantage of a very high NDRO readout speed

which is usually limited more by the electronics than by the element

itself. Thus the search speed of a Biax memory (I00 nanoseconds per

bit or less) would be much greater than that of a memory employing any

of the other multi-aperature devices. Transfluxors and other non-

orthogonal multi-aperature devices, on the other hand, have the advantage

of somewhat lower costs and are more readily adaptable to thin film batch-

fabrication schemes.

Magnetic Cores -- Conventional ferrite cores can also be operated in an

NDRO mode. Two examples of memories employing this type of operation

are the flux-lok memory and those employing minor loop readout. The se

methods of operation however impose stricter tolerances on the operating

parameters than those required by the conventional DRO mode and are

therefore not commonly employed. The maximum interrogation rate

for a ferrite core memory operated in the NDRO mode is lower than that

of a Biax memory, b,,t the cost is also much lower, especially for large

memories. It would also be extremely difficult to obtain the necessary

bi-directional readout capability with these NDRO readout methods.
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Thin Magnetic Films -- Thin magnetic films of both the flat and cylindri-

cal types can be used in this type of memory. They offer potential advan-

tages of high speed, small size, reduced power consumption, and low

cost. Problem areas such as uniformity, creep, and aging still exist

but they are apparently being solved. Two-dimensional readout has

also been a problem, particularly in the cylindrical configuration, but

at least one solution to this problem has been proposed. The open flux

structure of the flat thin film results in a large de-magnetizing field.

This imposes a maximum value on the thickness to area ratio of the

film. As a result, a compromise must be made which limits the pack-

ing density and maximum sense line output voltage. The cylindrical

thin films, the most common of which are the plated wire elements,

are not subject to these problems because the circumferential easy

direction results in a closed-flux structure. Most of the future NDRO

thin film memories are expected to employ cylindrical thin films for

this reason.

Tunnel Diodes -- The use of tunnel diodes in memories of this type has

been suggested. Because of their extremely high switching speeds,

tunnel diodes offer potential speed advantages in memory as well as

logic applications. In this approach however, a serial search algorithm

is employed. As a result the search speed is dependent not only on a

switching speed of the storage element but also on the speed of the

auxiliary electronics. When a very high speed switching element such

as the tunnel diode is used in a memory of this type the external elec-

tronics may have the greatest effect on the switching speed. As a re-

sult tunnel diode memory may not be faster than a thin film memory

when this approach is employed. Tunnel diodes have several disad-

vantages over magnetic elements. They consume more power, particularly

during standby operation; are volatile require addition circuit elements

for read-in and read-out; and are probably much less reliable because of

the large number of eleme_ts and interconnections required at each bit

location. For these reasons, except for very small memories, tunnel
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diodes should more properly be considered in connection with associate

memories employing local logic and cell intercommunication.

Ferroelectrics -- In applications where memory speed is less impor-

tant than power consumption ferroelectric and ferroelectric elements

could be considered. These elements share with the magnetic elements

the advantages of NDRO readout, non-volatility, and simplified reading

and writing. Maximum readout speeds however are probably in the one

to ten microsecond region. They also appear to be adaptable to mass

fabrication technique s although considerable research and development

may be required before this goal can be obtained.

The transpolarizer, a ferroelectric device similar in operation to the

transfluxor, could be used in this application. It consists of two or more

ferroelectric elements interconnected to form each storage cell. In

the present case, a total of three per cell are required and are connected

as indicated in Figure 3-3. This connection provides word Slice write

capability along with NDRO bit slice and word slice read capability. The

lower element in each cell holds the information and the two upper ele-

ments provide the non-destructive readout, one for each of the two read-

out directions. This circuit has not been tested but it appears to be a

reasonable solution to the two direction readout problem.

The basic circuit of the NDRO memory cell is shown in Figure 3-4. The

polarization of each ferromagnetic element is indicated for each part of

the write and read cycles. Note that if a "0" is stored, the read pulses

does not affect the polarization of either element; whereas if a 1 is

stored, both elements switch and the second writes the 1 back into the

cell. The presence of a stored 1 is sensed by means of a resistor that

measures the driver current during the switching of an element.
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T

Figure 3-3. Transpolarized Memory With Two Dimensional
Readout
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Figure 3-4. Transpolarizer NDRO Readout
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Variations of Approach 1

There are a number of variations of Approach 1 which are obtained by deleting

one or more of the basic capabilities described previously. In all cases these

variations either make it possible to realize the memory with a device which

could not satisfy all the previous requirements, or they make a significant

change in the capabilities of the unit.

Approach l a - Fixed Information Memory Element -- This variation involves

the use of a fixed information element. This change has no direct effect on

the associative operations that can be carried out; however, it allows the use

of a different set of elements. Of course the fact that the memory carmot be

written into does severely limit the applications but this will not be considered

at this time.

Any member of the class of :read only elements described would be suitable

for this approach. For small size memories, semi-conductor diode coupling

elements would be preferable since simple low powered drive and sense cir-

cuits could then be employed. For larger memories inductively coupled ele-

ments with printed circuit drive and sense lines appear to be advantageous.

They are capable of providing very fast search rates, probably at least as

fast as 100 nanoseconds per bit, and at the same time are amenable to low

cost, mass production fabrication techniques. Recent improvements in

the E-core memory have made it very attractive for medium to large size

fixed memory applications. Some memories, such as the slug memory, are

much more easily modified than the others. Others read only elements des-

cribed in Appendix B might be used in special applications.

Approach lb - External Storage for Single Bit Only, -- An associative memory

required to carry out only the equality search or the inequality search over

all words of the memory could be mechanized with a single bit of external

storage per word. That this is possible in the case of the equality search

is obvious from the description in the previous section. However in the case

of the inequality search, the algorithm described below must be used.

12017IR1



I

!

I

I

I

3-29

This is also a bit slice algorithm but it starts at the least significant end of

the word rather than the most significant end. Also with only a single bit

of storage, only a single set of words can be identified rather than three

sets (those greater than, those equal-t(_ and those less-than the search

word}. As in the algorithm described previously the set to be identified by

this algorithm can be one of the following four - those words greater-than,

those words greater-than-or-equal-to, those words less-than, or these

words less-than-or-equal-to the search word.

As an example, consider the steps of the procedure to find those words

greater than the search word. Initially the F/F's are set to 0. The compari-

son starts with the least significant bit and proceeds to the most significant
th

bit. The decisions at the j word upon comparison of the i th bit are:

a) If they match do nothing.

b) If they mismatch and if the i th bit of the search word is 0, set

the jth F/F.

c) If they mismatch and if the i th bit of the search word is 1, reset

the jth F/F.

When the processing is completed, all those words greater than the search

words will be identified by F/F's in the 1 State_

The logic and storage appropriate for this operation is shown below. Note

that the only change required to do a less-than search is to initially set the

F/F and when the process is completed all F/F's in the reset condition will

correspond to words less than the search word. The greater-than-or-equal-

to and the less-than-or-equal-to searches are the same respectively as the

two above except the initial state of the F/F is changed.
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COMPARE LOGIC

FROM OPERAND
REGISTER

4k

W

s _

RESULTS STORE

FROM
MEMORY

PLANE
C

F/F A

No other search or processing operations can be performed with this memory.

The devices applicable to this variation are the same as those described for the

basic approach.

Approach 2 - Associative Memory with Bit Slice Writing

Description

This approach is like Approach 1 in that it does not make use of local logic.

The significant difference between the two is that this memory has the

capability of writing a bit slice. This allows the writing-back of results

of searches. This is a necessary capability for the performance of pro-

cessing operations and it also allows the use of the memory plane for

storage of results of searches for use on future searches. A block d iagrarr,

of this organizational approach is shown in Figure 3-5.

The bit slice writing capability is seen to require a driver per word but

eliminates the need for address decoding. The information to be written
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OPERAND REGISTER

ADDRESS

FOR PROCESSING

(WORD SLICE) !

I INPUT REG15TER
WORD I

SELECTORS

-_ WORD !

I _ WORD2
INPUT ._!'---I ! _ TOWORD

(BIT SLICE)_ I I ' SELECTORS
I I I ARRAYOF
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RESULTS _ I I . "_ OUTPUTS
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J OUTPUT REGISTER
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Figure 3-5. Approach 2 - Associative Memo
Bit Slice Writing
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is placed in the Results Store, either as the result of a search operation or

by gating from the outside, and it is written into a selected bit slice by supply-

ing a path directly from each word-position of _he Results Store to each word

driver. Writing of a word slice is accomplished by first performing a search

to locate a word position and then using the contents of the Results Store to

select the word driver for writing. The information to be written in this case

is furnished from the Input Register. Of course if the application required

writing by address a word address decoder such as was shown in Figure 3-2

could be included.

The reading capability of this approach includes both bit slice and word

slice readout. Bit slice reading is accomplished in the same manner as

described for Approach 1. Word slice reading is accomplished by perform-

ing a search to locate the word, gating the contents of the Results Store to

the Word Drivers, and thus transferring the contents of the selected word

to the output register.

Other outputs which might be desired from the Results Store, depending on

the application, are addresses of words satisfying a search and the number

of words satisfying a search.

The access to bit slices for bit slice processing is again accomplished by

decoding an address furnished by the Controlling Unit.

The External Logic has the capability of performing the Exclusive-OR

logic operation as was the case for Approach 1.

Capabilities

_Equality, Inequality, and Maximum (Minimuml Searches -- These searches

are performed in exactly the same way as described for Approach 1.
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Proximity Search -- The proximity search cannot be performed as a basic

operation but it can be performed as a combination of search and processing

operations. The procedure is as follows:

a)

b)

c)

Perform a bit slice comparison to determine if a match or mis-

match exists in each bit position.

With a portion of each word used as a counter, count the number

of mismatches that occur in each word.

When all bits have been compared and counted, a minimum search

p_luL,,,ed on the counter to determine which word had the few-

est mismatches.

Intersection of Searches -- The intersection of searches is handled by sim-

ply using the results of one search as the input set to the next as was done

in Approach 1.

Union of Searches -- The union of searches can be handled in this approach

without the restrictions imposed in Approach I. This is done by using a bit

slice of memory for the storage of the results of the first search of the se-

quence while the second is being carried out. The results of the second

search are then OR'ed with the first by simply writing them over the results

of the first search. This procedure can be continued for any number of

searches.

Field Addition (X 1 + YI' X2 + Y2' X3 + Y._" - ..... , Xn+Y n) -- This

type of add involves the case in which each word of the memory contains

an X field and a Y field. It is desired to produce the sum Z = X + Y and

store it either in a third field of each word or in place of the X or Y .

quantity. This operation can be performed by successively re-writing the
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bit s of X, Y, and the carry bit C into control bit positions. The assignment

of bit position in each word of the memory would be as shown below"

WORD 1

WORD 2

X1

X2

Yi

Y2

CONTROL
BITS

CONTROL
BITS

A total of seven control bits are required per word to carry out the operation.

Consider the addition operation X + Y -_ Z. The Boolean equation for the sum

and carry bits are:

Z.

1
: X'.Y'.C. + X'.Y.C'. + X.Y'.C'. + X.Y.C.

1 1 1 1 1 1 1 1 1 1 1 1

C. = C.X. + C.Y. + X.Y.
1 + ] 1 1 1 1 1 1

These equations can be written in the form:

z. = _xi + Yi + c'i)(xi + Y'i + ci)(x'i + Y_+ ci)(x'i + Y'i + ci)]

(1) (2) (3) (4)

(C'i + Y'i ) (X'i + Y'i)_ '

(6) (7)

C.1 + ] : EC'i +x'i)

(5)

The numbers below each term in the equations above correspond to a control

bit in the memory used to generate that term. For instance by storing the

quantity X i, Y and C' successively in control bit I the term _ + v + C'

is generated, Similarly, the other three terms in the Z equation are gener-

ated in control bits 2, 3, and 4, The AND function of the four terms of the
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Z equation is then generated by doing an equality on control bits 1, 2, 3, and

4 against 1111. This operation is effectively an OR function of the complements;

that is, if any of the four is a 0, a 1 will be set in that position of the Results

Register. The information in the Results Register at the end of this search

is Z i. The generation of C i + 1 is carried out in a comparable manner using

control bits 5, 6, and 7.

The step by step procedure for X + Y-_Z is outlined below. At the end of

each cycle the carry C is left in the Results Register for use during the next

cycler Thus prior to the first cycle, the Results Register must be cleared

to give an initial carry-in of 0.

.

2.

3.

4.

.

6.

7.

8.

9.

10.

11.

12.

13.

Procedure for Add Cycle

Write C. to control bits 2, 3
1

Complement

Write C[ to control bits 1 4, 5, 6
1

Read Yi

Write Yi to control bits 1, 3

Comple me nt

Write Y'. to control bits 2, 4, 6, 7
1

Read X i and write X i to control bits 1, 2

Comple me nt

Write X'. to control bits 3, 4, 5, 7
1

Search control bits 1, 2, 3, 4 to generate Z.
1

Write Z i (This can be stored in place of X. 1

or Yi or in a third fieid) '

Search control bits 5, 6, 7 to generate C.1+1
Totals

NO.

Reads

4

3

9

No. of

Writes

7
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The totals represent the number of reads and writes for a single bit add.

Note that it is possible to write the same information into multiple bit

slices simultaneously (step 3). This is possible since the information is

furnished by the word driver and the bit slice is selected by the bit

driver. This will necessitate the capability of energizing more than one

bit slice at a time.

- - + S) -- This operation is per-Addition (X1+ S, X2 + S, ....- - - -, Xn
formed in this memory in the same manner as the previous type of

addition. Instead of reading the Y bits from the memory plane, they

are read from the search register. Thus the number of read operations

from the memory plane will be one less per cycle than in the previous

case.

Counting -- Counting simultaneously in each word of the memory is

performed by the following algorithm. A single control bit in each word

is used to store the carry C. and the field X is used to store the counter.
1

It is assumed that an initial carry, which is actually the identity of those

counters to be incremented, is located in the Results Store.

a.

b.

C.

d.

Write the contents of the Results Store in control bit 1.

Search for X. C.. If a match exists write X. = 0.
1 1 1

Search for X i C i. If a match exists write X i = 1 and Ci+ 1 = 0.

Repeat steps b and c for successively more significant bits

of X until all have been processed.

It can be seen that four bit-slice reads (for the two searches) and 3 bit-slice

writes are required for each bit of the counter.

Shifting -- Shifting within each word can be performed only by reading and

re-writing each bit to be shifted. This requires bit slice reading and

writing and thus can be performed simultaneously for all words or for a
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selected subset of words. An unusual feature about this method of shifting

is that the time required to shift is independent of the amount of the shift

and is directly dependent of the number of bits involved in the shift.

The time required to perform the shifting on a single bit regardless of the

amount of the shift is 1 read time and 1 write time.

Complement -- The complement operation on a set of words is performed

by reading in a bit slice manner, complementing the contents of the

Results Store, and rewriting to the same bit slice.

q"_,_ +_-_,_ *-.... _,-,_,_ _,_,- thi_ np_'_tinn i_ 1 rp_d time and 1 write per bit.

assuming that the time required to complement the contents of the Results

Store is negligible.

Logic sum(X1 kJs, x 2kjS, - ..... " Xn (iS) -- The logic sum of a

set of stored quantities X and the contents of the operand register S is

performed in this memory by examining each bit of S in any order desired

and doing the following:

ao

b.

If the i th bit of S = 1,

If the i th bit of S = 0,

position

write Z. = 1
1

perform an equality search in the i th bit

1) If a match signal is received, write Z i = 0

2) If a mismatch signal is received, write Z. = 1
1

The time required for this algorithm depends on the operand S. If the
m

operation is performed over m bits, the average time is --if- reads and

m write.
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Logic product (X iN S, X 2 ¢_S, - ..... , X n_s) -- The logic products of

a set of stored quantities X and the contents of the operand register S is

performed by examining each bit of S in any order desired and doing the

following:

a. If the i th bit of S = 0,

b. If the i th bit of S = 1,

position

write Z. = 0
1

perform an equality search in the i th bit

1) If a match signal is received, write Z i = 1

2) If a mismatch signal is received, write Z i = 0

The time for this operation is the same as for the logical sum.

Mechanization Considerations

Requirements on the Device -- The requirements on the device to mechanize

this approach are quite similar to those of Approach 1. In fact the only

difference is the additional requirement to be able to write a bit slice. The

inclusion of a bit slice writing capability, however, allows the use of a

destructive readout (DRO} memory element. An additional incentive to

considering DRO devices is that their write speed is generally faster than

that of an NDRO device. If the application is heavy on processing, the

write speed is vitally important since the number of writes is nearly as

great as the number of reads, However, other consideration such as power

still make an NDRO device advantageous.

I

1

I

Applicable Devices -- The requirements of this approach permit all of the

elements described under Approach 1 to be used here as well. Because of

the additional required bit slice write capability those elements which

require large word-write currents may not be acceptable for large memories.
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Additional elements which could not be considered in Approach 1 but which

can be used in Approach 2 include ferrite and metal cores operated in the

DRO mode. These devices offer the advantage of extremely low cost

particularly when very large memories are under consideration. The

ferrite sheet (or monolithic ferrite) memory could also be used in this

approach. Since this type of memory is made by a batch fabrication process

it should be less expensive than conventional core memories once produc-
tion problems have been solved. It is also expected to be somewhat faster

and to require less power than the conventional types.

Variations of Approach 2

The capabilities of this approach for arithmetic operations can be improved

appreciably by increasing the external logic facilities. The basic approach

described above uses a minimum amount of external logic (only the Exclusive-

OR function). The logic can be increased in any number of steps until the

point is reached where a complete serial adder exists for each word of

memory. While it is realized that there are many perfectly reasonable

part-way points, only the serial adder per word variation will be described.

(Approach 2a).

Two other variations are also described. Approach 2b is simply Approach 2

with only a single bit of external storage per word. Approach 2c is a

relatively severe variation; the random access to a bit slice capability is

replaced by a cyclic access capability.

Approach 2a - Serial Adder per Word -- In this approach, the External Logic

has been expanded to the extent that a complete serial adder is provided for

each word. This change, provides increased arithmetic capabilities as

compared to Approach 2. With the carry bit stored in the serial adder or in

the Results Store a single bit add of any of the types discussed can be per-

formed by the following algorithm:
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a) Read and Store X i

b) Read Yi (either from memory or from the operand register) and

generate 7,i and Ci+ 1

c) Write Z.
1

Assuming the memory reading and writing operations are limiting, a single

bit add can be done in 2 read times and 1 write time.

The serial adder per word approach has an additional potential advantage.

If the requirement for performing arithmetic on a small set of operands

x,_uul_ two ,_,,,,_,,.h_*'_, ........fn,-in._tance), occurs, these numbers can be stored

in the memory in the bit slice direction and the set of serial adders could

be connected to act as a parallel adder as in a conventional computer. In

fact this approach used in this manner is not much different than a con-

ventional random access memory along with a conventional parallel

arithmetic unit.

The mechanization requirements for this approach are much like those for

Approach 2. The only significant difference is that the reduction in the

number of write operations relieves to some extent the need for a high

speed write.

Approach 2b - External Storage for Single Bit Only -- The effect of restricting

external storage to a single bit per word was previously discussed as

Approach lb. It was found to limit rather severely the capabilities of

Approach 1. The effect here is somewhat different because Approach 2 has

a bit slice writing capability. Therefore a bit slice within the memory plane

can serve as the second bit of storage required on a per word basis for

operations such as the maximum (minimum) search. It can also serve to

store the identity of a selected subset of words if it is desired that not all

words be included in a given search.
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As an example of how this capability can be used, consider the maximum
search. Recall that the set of words under consideration for maximum

value prior to each bit slice comparison must be retained until after the

comparison in case none of the words satisfy the search. The algorithm

would have the following steps:

a°

b.

Store the present contents of the Results Register in control bit C 1.

Perform a bit slice comparison.

1) If one word satisfies the search, it is the maximum value

2) If more than one word satisfy the search, return to step 1.

5) If no words satisfy the search, read C 1 and then return to

step 1.

It can be recognized that this procedure will be more time consuming than

if two bits of storage were available external to the memory array since

writing into the memory plane is undoubtedly slower than the transfer

between two external registers.

Approach 2c - Cyclic Access -- This approach to an associative memory

is based primarily on the capabilities of a class of devices. There are devices

which are cyclic rather than random access. Such a device can be used to

realize an associative memory fitting onto this category since it will have a

bit slice writing capability. However there are a number of organizational

descriptor differences. These are discussed below:

a°

b.

C.

There is no capability for doing word slice writing

Word slice reading is not possible

Access to bit slices is cyclic rather than random
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___he inability to do either reading or writ.ng in the word slice dir .ction does

not effect the.: processing capabilities but does limit t. e practical areas of

application. The inability to access bit slices randoI.fiy however does have

an appreciable effect on the process:ng c_pabilities. Probably the greatest

:'estriction i_ that all operations on _ giw._n set of wo_ds must be performed

:n the same _it sequence - starting _t the most signif cant end, o" starting

_:t the least : ignificant ez_d. While t}_e eqaality searc i and tile in_ quality

_earch can k-: carried out starting al either end, the :naximum (minimum)

search and tm arithmetic operations haw, conflicting requiremen.s. The

maximum (n mimum) search must proceed from the 1:lost significant end,

while arithmetic operations must proceeci from the le__st significant end.

Arithmetic operations in general can be performed oz ly if a com_:let_,

serial adder per word is furnished. Even then the field add _ould not be

possible unless they are interlaced rather than separated as shown below:
• | , , ,

The lack of random access to bit slices rules out the ase o[ control bits

within the me mory. Thus one of tile main adva_ltages of tla: bit slice writing

capability is tost.

Other proce, ssmg operations such as counting a_d shllti_lg are equally

difficult in this approach. Shifting, for instance, would __,quire a complete

cycle for each bit of shift,

Any of the cyclic access media could be used in this approach. Magnetic

drums and magnetic discs offer the advantage of extremely low cost for

very large memory sizes. They also employ non-destructive rea_tout means

and, even more important, are nun-_olatile thereby insuring the integrity of

the memory if power should fail. Th_ :-e!iabi!ity prob!e.ms of a r,._tatmg

rrledium have led to tile replaceme_lt of these types of menlories by at,rustic

12017IR1



I

!

3-43

delay lines, either of the nickel wire or glass types for many applications.

The replacement process has been accelerated as the costs of these later

types of memories (on a per bit basis) decrease. The glass delay lines

/constitute the only type of memory in which a search operation can proceed

at a bit rate as high as 25 to 50 million bits per second. All of these delay

lines are volatile devices and all require continuous circulation of the in-

formation. These are serious limitations for many memory applications.

Research has been done on a type of magnetostrictive delay line called the

strain wave memory which is not volatile and employs static storage. In

this case the acoustic wave does not carry information and instead is used

to reduce the coercive force of a magnetic film, which is plated on the wire,

l lt_.LU Lllt:_ll _/A-ven "_.T 1"_ 1"_ f_,

operation can be achieved with this type of memory. Another non-volatile

element in this category is the domain wall motion magnetic shift register

which is attractive for medium speed memories with long bit length.

Semiconductor shift registers, particularly of the integrated circuit form,

can also be used in this approach. The fastest of these would be capable of

very high search rates of at least from 10 to 20 million bits per second, but

power consumption would be prohibitive for very large memories. Tunnel

diode shift registers might also be used in a similar manner, and in this

case the speed would undoubtly be limited only by the external bit slice

logic. Shift speeds of 100 megabits per second or greater should be possible.

Approach 3 - Associative Memory with All-Parallel Equality Search

De s c ription

This is the first organizational approach to utilize local logic to perform

the search operations. The block diagram for this approach is shown in

Figure 3-6. The most significant difference between this block diagram

and those of the bit slice approaches discussed previously is that in this
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Figure 3-6. Approach 3 - Associative Memory With
All-Parallel Equality Search

12017 IR1



3-45

case the operand is furnished to the memory rather than the contents of the

memory being read out to the External Logic. In fact the External Logic

block has been deleted from the diagram.

The cell in this memory has in addition to the capability of storing a single

bit of information, the capability of performing a simple logic function.

The logic included in the cell, is the EXCLUSIVE-OR function; that is,

the cell has the capability of performing the EXCLUSIVE-OR function

between the stored bit and a bit furnished from the operand register.

The output from each cell is a match-mismatch signal.

In order that ]ocal logic provide any advantages over external logic it is

necessary that the signals be of such a form that an all-parallel equality

search can be performed. If the cell is mechanized with magnetic devices

the desired form is that the match signal be a null signal. Then the sense

lead performs an OR function of mismatch signals as all bits are interrogated

simultaneously. While for other types of mechanization the desired form of

the signal may be different, a null match signal will be assumed in the dis-

cussion which follows.

Both bit slice and word slice writing capabilities are assumed for this

approach. Bit slice and word slice reading are also included.

Capabilities

Equality Search -- The main advantage of local logic of the type present in

this approach is the increased speed in performing an equality search. Since

the match condition in each ce!! generates a null signal and the mismatch

condition generates a non-null signal, an all-parallel approach is feasible.

A mismatch condition in any one cell will produce the desired word mismatch
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signal. A multiplicity of mismatch conditions in a given word will Simply

produce a larger mismatch signal. Note that if the match signal was not a

nu!l signal but simply opposite in polarity compared to the ;nismatch

signal, an all parallel search would not be possible since match and mis-

match signals would cancel each other out.

Inequality Search -- The all-parallel equality search capability allows the

use of a faster algorithm 4 for the inequality search than was possible in

previous approaches. The number of cycles required for this algorithm is

equal to the number of 1 's or the number of 0's in the search word depending

on whether a greater-than or less-than search is being performed. The

...... ,_.... en,- _ g-o_tor-th_n Ae._._-thanl search is as follows:

a. Convert the least significant 0 (1) of the search word to a 1 (0).

b. Masking out all bits of lesser significance than the converted bit,

perform an equality search.

c. The words satisfying the search are members of the set SG(SL).

d. Repeat steps 1 through 3 until all the O's (l's) in the search word

have been converted.

The union of all words satisfying these searches is the set of words greater

than (less than) the search word.

An example of the alterations made to the search word in this procedure is

given below

original 1 1 0 1 0 0 1

first search 1 1 0 1 0 1 X

second search ! ! 0 ! 1 X X

third search i i X X XX X
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Note that a maximum of two stored words can satisfy the first search -

1 1 0 1 0 1 0 and 1 1 0 1 0 1 1. Both are greater than the original

search word. The second search may locate as many as four additional

words satisfyzng the search- 1 1 0 1 1 0 0, 1 1 0 1 1 0 1, 1 1 0 1 1

and 1 1 0 1 I 1 1. In general each search may locate 2 _stored words

where _ is equal to the number of masked out bits.

0_

The organization of the Results Store facilities to mechanize this algorithm

is shown below:

CLEAR SIGNAL 11_ANSFERSIGNAL

! MISMATCH

SIGNAL
j WC_D

F/F A __
C 0 C

F/F B

0

After each search, the B F/F's will be set if the A F/F contains a 1. The

A F/F's are then all cleared in preparation for the next cycle. At the end

of the search (all O's have been converted to l's) those B F/F's which are

set correspond to words greater than (less than) the search word.

Maximum (minimum) Search -- This search is inherently a serial-by-bit

operation and the all-parallel equality search does not provide any speed

advantage over strictly bit slice searching. However there is an advantage

in terms of the number of external storage locations required. This advantage

is described in Approach 3b.

Proximity Search -- Although the proximity search is done by the same

procedure described for Approach 2, the time required to perform it is

less than that of Approach 2 due to an improvement in the counting operation.
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Intersection and Union of Searches -- These searches are performed in

the same way as described in Approach 2.

, - - - + Yn } -- The all-parallelField Addition (X I + YI X2 + Y2' ' Xn

equality search capability can be used to good advantage in performing the

field add operation. The field add was previously define d as the operation

of adding quantities X and Y stored in each word of the memory to obtain a

set of sums Z = X + Y. The sum Z will be stored in place of the quantity

Y since this would be the most frequently used type of field add. Another

type, in which the sum Z is stored in a third field, can be performed also

but it requires more time.

The algorithm to be described is due to Fuller (4) and uses a bit of the

memory to store the carry bit, C. Atruth table for this operation shows

those combinations of X i Yi Ci which must be detected. Since the location

of Yi is used to store the sum bit Z i and since the next carry C i + 1 replaces

the present carry C i, the table can be presented as follows:

Present State Next State

Xi Yi Ci Xi Zi Ci+l

i. 000 000

2. 001 010

3. 010 010

4. 011 001

5. 100 I i 0

6. 101 101

7. 1 1 0 1 0 1

8. 1 1 1 1 1 1
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It can be noted that only input combinations 2, 4, 5, and 7 necessitate changes.

It can also be noted that present state 4 generates a next state which is the

same as present state 2, and present state 5 generates a next state which is

the same as present state 7. Thus in order to prevent the occurance of

errors, input combination 2 must be processed before 4, and input combina-

tion 7 must be processed before 5.

If C is initially set to 0 and with the operation proceeding from least significant

bit to most significant bit, the steps requiFed for each bit of Z are as f011ow.s:

a. Search for X i = 0, Yi = 0, and C i = 1. Write Z i = 1 and Ci+ 1 = 0

b. Search for X. = 0, Y. = 1, and C. = 1. Write Z. = 0 in words
1 1 1 1

satisfying the search.

c. Search for X. = 1, Y. = 1, and C. = 0. Write Z. = 0 and C. = 1
1 1 1 1 1

in words satisfying the search.

d. Search for X. = 1, Y. = 0, and C i = 0. Write Z. = 1 in words1 1 1

satisfying the search.

In summary this algorithm requires four searches and six write operations

per bit of addition.

- + S) -- The centralized add operationAddition (X i + S, X 2 + S, - .... X n

is carried out in a manner similar to that described for the field add. However

in this case the quantity S is in the operand register rather than in the memory.

Thus the searches are performed only over X and C, the particular combina-

tions of the interest depending on whether Si is a 1 or a 0. The operation

requires two searches and three write operation per bit if Z. replaces X..
1 1

If Z. is stored in a second field of each word the number of writes is the
1

same as above but the number of searches is 2 or 3 u_,_llu,ns_ .... _" .... on ,,,,."'_+_"_"_,,.,

Yi is 0 or 1, respectively.
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Counting -- Counting in this associative memory is performed by using the

same algorithm described for Approach 2. The all-parallel equality search

allows the count to be made with two searches and 3 write operations per bit

of count.

Other Processing Operation -- Shifting, complementing, and logic operations

are performed in this associative memory in the same manner as described

for Approach 2.

Mechanization Considerations

Requirements -- The cell used in this associative memory requires not only

a storage function but also a logic function. Thus the device to be used in

mechanizing the cell must provide both these functions. The fact that the

stored bit is used internally (to the cell) in a logic operation means that the

storage device must have a non-destructive readout (NDRO) capability and

must be comparable with the logic performing elements.

I
I

I

I

I

I

I

I

Applicable Devices

Plated Wire -- One device suitable for this approach is the plated

wire element, which is described in detail in Appendix A. A cell

made up of three plated wire elements can provide the capability of

storing a single bit and of performing the EXCLUSIVE-OR logic

function between the stored bit and a bit in the Operand Register.
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When interrogated the plated wire element produces outputs of the follow-

form:

STORED I

STORED 0

INTERROGATE CURRENT

i j , iI I I

__i ;___r-a_

! t I !
I I I I

Assuming that only the first polarity generated is recognized, the out-

put produced when interrogating a stored 1 will be called a positive signal

and that produced by a stored 0 a negative signal.

An associative memory cell is made up of three basic elements in the

I following configuration:
S'.O S-1

J

i
Y

INTERROGATE WIRES

PLATED
SENSEWIRE

The notation within the cell indicates the quantity stored at each of the

three storage elements.
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Interrogation of the cell will result in the simultaneous interrogation of

two of the three storage elements depending on the state of S.

This cell uses signal cancellation techniques to obtain the desired output

which includes two possible signals - a null signal to indicate the match

condition, and a positive signal for the mismatch condition. These are

illustrated below:

X=O, Y=O

X=O, Y=I

X=l, Y=0

X=I, Y=I

no signal

positive signal

positive signal

no signal

This cell has the disadvantage that each bit must be stored in two loca-

tions. Thus bit slice writing requires two write cycles instead of one.

A method of overcoming this disadvantage is described in Approach 4.

Integrated Circuits -- Integrated circuit flip-flops and logic elements

can be used to provide the storage and logic requirements of this

approach. For small memories this type of mechanization is feasible

and would provide higher operating speeds than those attainable with

magnetic elements. For large memories, line capacity limits the

speed and the power consumption becomes impractically large. Field

effect transistor circuits appear to be optimum for medium size

(I0, 000 words), moderate speed memories while bipolar transistor

circuits are better for small size (I000 words) high speed applications.

It will undoubtedly be possible to place several bits (up to I0 or 20) on

each chip thereby relieving some of the packaging and interconnection

problems.

The cell, in this case, would consist of a transistor flip-flop with read-

in logic and gated NDRO read-out plus an EXCLUSIVE-OR circuit that

grounds the output line whenever the inputs are not equal. All of the

EXCLUSIVE-OR circuits for a given word can then be connected
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together and the output will be a= ground potential if any of the bit pairs

mismatch and will be at the higl:er potential only if all bit pairs match.

The integrated circuit cell, of course, is volatile, but it may be possi-

ble to alleviate this disadvantage. A ferroelectric storage element

might be deposited on the integrated circuit chip and a circu:t could

be deviaed to automatically transfer the flip-flop contents into the

ferroelectric capacitor whenever the power went off and back into

the flip-flop as soon as power was restored. Ferroelectric capacitors

are better than magnetic cores for this application since they can be

driven and sensed by very simple circuits. It would not be desirable

to leave the _..... ,_+-_ oio,_, _n t-h_ circuit because of its low

switching speed.

The cryotron is also suitable for very large memories of this type.

Some of the advantages and disadvantages as well as the problems

involved are discussed under Approach 4.

Variations of Approach 3

Approach 3a -- Approach 3a is simply Approach 3 without the bit slice

writing capability. The main effect of this change is that it eliminates the

capability of performing processing operations. These changes are noted

in Table 3-I.

Approach 3b -- This variation of Approach 3 is obtained by reducing the

external storage to a single bit per word. Such a change in this approach

has less effect on the capabilities than in any of the previous approaches.

The equality search and the processing operations are not effected at all

and alternate schemes are available for the inequality and maximum

(minimum) searches.

12017 IR1



I

I

I

I

I

I
I

I

I

I

I

I

I

I

I

I

I

I

I

3-54

The inequaliiy can be done by the same algorithm described for Approach 3

except that the partial results obtained rater each equality search must be

stored in a control bit of the memory. Another alternative is to use the

same algorilhm as described for Approach la. While the writing of results

to the memory plane is not required in this algorithm, the number of

searches is ncreased since a single bit _earch is required for each bit in

the search field. The choice of algorithms depends on the write speed of

the element.

The maximum (minimum) search is performed in this approach by using

the: all-parallel equality search to full advantage. The algorithm proceeds

_n a bit slice manner from the most ...... _.... +biglm_.a_,L _';+to the 1,_t _ignificant

bit, but each successive search inchdes the next bit in addition to all the

previous ones. This the first search will be over only the most significant

bit, the second will be over the two most significant bits, the third over the

three most significant, etc. The first time a bit position is included in a

search, a 1(0) is contained in that position of the search register. However,

if no words satisfy the search, the bit is changed to a 0(1) for all subsequent

searches. This algorithm has the advantage that the words still in compe-

tition for maximum (minimum) value do not have to be remembered from

one step to the next. Thus onlsr a single bit of external storage is required.

Approach 4 - Local Logic - Ternary Output

Description

The logic function performed in the cell in this approach is slightly more

complex than that of Approach 3. Sufficient logic must be provided in this

case to separate the four possibie combinations of two bits into three sets -

thus a ternary output signal is required. This ternary output signal from

the cell is desired for both the inequality search and for arithmetic operations.
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The form of the ternary output signal will depend to a great extent on the

mechanization of the cell. Although a number of devices can be used to

mechanize such a cell, the signal assignment used here is aimed at the

use of a magnetic device. The signal assignments are indicated in the

table below:

Input Outp3t From Cell

Combinations Equality Search Inequality Search Add Operation

0 0

0 1

1 0

1 1

no signal

positive signal

positive signal

no signal

no signal

positive signal

negative signal

no signal

negative signal

no signal

no signal

An additional requirement on this cell is that of performing a logic function

on two bits stored within the memory. This is in contrast to the normal

situation where one bit is stored in the cell and the other is furnished from

the operand register. This requirement, which is useful for the field add

operation, can be fulfilled either by providing for the storage of two bits

within each cell or by allowing pairs of cells, each with a single bit of

storage, to interact with each other.

To provide this variety of requirements a variable function cell is proposed,

wherein the output of the cell varies depending on the operation being

performed.

The block diagram of this approach is shown in Figure 3-7. It can be noted

that bit slice and word slice modes are included for both the reading and

writing operations.
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INPUT

(WORD SLICE)

INPUT AND OPERAND REGISTER

I

WORD J ( REGIS

SELECTORS W_'_D 1

FROM I I I _RA¥OF
RESULTS "1_ I I CELLS

STORE ii

I
WORD n

PUTREG

OUTPUT

Figure 3- 7.

MASK REGISTER
RESULTS
STORE

J

t

OUTPUT
"J_ (BIT SLICE)

TO WORD
• SELECTORS

MISCELLANEOUS
OUTPUTS

OUTPUT REGISTER J

(WORD SLICE)

Approach 4 - Associative Memory With
Local Logic - Ternary Output
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Equality Search -- The cell specifications indicated that the outputs of the

cell for the equality search operation will provide the null match signal and

a positive mismatch signal. Thus an all-parallel equality search as described

in Approach 3 is possible.

Inequality Search -- The output signal defined for the inequality search is a

ternary signal which not only indicates the match - mismatch condition but

also identifies the type of mismatch that has occurred. This allows a faster

inequality search than was possible using external logic.

The algorithm proposed for use here is the same as previously described for

Approach 1. The procedure is started by comparing the search word to

stored words in the most significant bit position and proceeding in a bit slice

mode. For a given word, when the first mismatch signal occurs, that word

can be classified as less than or greater than the search word. If the

assignment of signals is as defined above, a positive signal will indicate

less than, and a negative signal will indicate the greater than condition.

When the processing has proceeded through all bit slices, all words will

have been separated into three sets - those less than, those greater than,

and those equal to the search word.

With all the logic, needed to make the above decision, in the cell, no word

to word synchronization is required as was the case with the external logic

approaches. Because of this it is anticipated that the rate of processing of

bit slices could be considerably faster in this approach than in previous

approaches using external logic.

An additional speedup can be obtained by making a slight alteration in the

algorithm. The presence of a null match signal allows the processing to

be carried out by sequences of l's and O's rather than by a strictly bit slice
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mode. For example if the search word is 0 0 1 1 1 0 1 1, a total of four

search cycles are required rather than eight as in bit slice processing. The

first two O's can be searched simultaneously, then the three 1 's can be

searched simultaneously, then the next 0, and finally the last two l's making

a total of four searches.

Other Search Operation -- The maximum (minimum) search, the proximity

search, and the intersection and union of searches are performed in the

same way as described for Approach 2.

Addition (X 1 + S, X 2 + S, , X n + S) -- The requirements placed

on the cell in order to perform the add operation without external logic were

included in Table I. A ternary output signal is required which not only

detects the match-mismatch condition but also differentiates between the

two match combinations. The reason for this requirement can be seen by

examining the Boolean expressions for the sum and carry bits written in a

form to make maximum use of an EXCLUSIVE-OR logic capability.

Zi = C1 (Xi Si +Xi Si) + Ci (Xi S--i+xi Si)

=C.A+C.A
1 1

Ci+ 1 = X i Si + (X i Si + X i Si) C i

= X i Si + A C i

where A = X i Si +X i Si

Note that in addition to the requirement for an EXCLUSIVE-OR function,

there is a need for an AND function in the equation for Ci+ 1. The assign-

ment of output signals from the cell (p. 3-55} provides the capability needed
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by differentiating between the Xi Si and X i Si combinations rather than

between Xi Si and X i Si as was needed for the inequality search.

Since no external logic is used, when the quantity A has been generated it
must be stored in a control bit. Two control bits will also be used for the

storage of carry bits -- one for the present carry C i and one for the next

carry Ci+ 1. The anticipated allocation of bits within each word is shown

below:

woeD j x A Ct

! C| ÷1

i

This makes obvious the need for performing the logic function on two bits

stored within the word rather than between one stored bit and one bit

furnished from the operand register as in all previously discussed operations.

The steps of the algorithm are outlined below:

Logic Operations

1. Perform logic on X i and Si

Write Operations

a

a) If output is positive, thenX i= 1, Si = 1 Write A = 0, Ci+ 1 = 1

b) If output is negative, thenX i = 0, Si = 0 Write A = 0, Ci+ 1 = 0

c) If output is "no signal" thenX i = 1, Si = 0 Write A = 1, Ci+ 1 -- 0

orX. = 0, S. = 1
1 1

Perform logic on C. and A
1

a) If output is positive, then C i= 1, A = 1 Write Z i = 0, Ci+ 1 = 1

b) If output is negative, the C i = 0, A = 0 Write Z i = 0

c) If output is "no signal", then Ci = 1, A = 0 Write Z i = 1

or C. = 0, A= 1
1
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In summary it can be seen that two searches (logic operations) and either

three or four writes are required for a single bit add.

Field Addition (X i + Yi" X2 + Y2' ' Xn + Yn ) -- The field add

operation, in which both the X and the Y quantities are stored within the

memory, is carried out in exactly the same way as the previous operation.

It also makes no difference whether the sum Z is stored in a third field of

each word or in place of either X or Y.

Count -- The count is performed in this memory by making use of the

capability of performing a logic operation on two bits stored within each

word of the memory. A single control L-, • .v. _ C iu_ zs uscd to s÷,,_ the carry and

the field X is used to store the counter.

Assuming that the Results Store contains l's in those positions correspond-

ir_ to words to be incremented, the algorithm is as follows:

al

b.

C.

Write the contents of the Results Store to control bit I.

Perform logic on X. and C.
i 1

i) If output is positive, thenX i = i, C i : i. Write X i = 0

2) If output is "no signal", then X i = 0, C i = l

orX i = i, C i = 0.

Repeat step b for successively more significant bits of X.

Write X i = i, Ci+ 1 =0

Thus a single read (logic operation) and three writes are required for each

bit of the counter.

Other processing operations -- Shifting, complementing, the logic sum, and

the logic product are performed _...... ,_11,, *hp same manner as described

for Approach 2.
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Requirements -- The device requirements are probably more severe for

this organizational approach than any of the previous ones. Since the logic

function is distributed throughout the memory, the device must have both

logic and storage capabilities. Thi_ plus the need for a null match signal

are no different than the requirements oI Approach 3. The additional

features needed in this cell are a ternary output, where the assignment of

minterms to output signal varies depending on the operation being performed,

and the capability of performing the logic function on two stored bits as well

as on one stored bit and one furnished from the operand register.

The bit slice writing capability is again quite important as it is in any

approach aimed as processing rather than just searching.

Applicable Devices -- Surprisingly not all magnetic devices can be im-

mediately ruled out of this organizational approach. The plated wire

memory element, operating in a mode of operation similar to that described

for Approach 3, appears to be a feasible device. The mode of operation

utilized here is signal cancellation of the same general type as previously

described. A set of three of the plated wire storage elements are grouped

together to form what is called a SCANCELL (Signal Cancellation Cell). In

addition to performing a storage function the cell can perform the desired

logic functions required for the equality search, for the inequality search,

and for the arithmetic operations. The way this is done is shown below

where X and Y are stored quantities and S is the contents of the operand

register:
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j WORD

I $1

ol ,1
s -.,-_ r_.-

d
_. i x1

I t
; !

OPERAND REGISTER

$2 I----

OJ II
,L A

_ f

i m

I
I
I

I
I

S -
m •

!

oi ,I

| !
I ,
I I

RESULT
STORE

I
I

i

----i
I
I

The notation implies that two interrogate wires of each ceil are energized

at a time -- the left two if the bit of the Operand Register contains a O, and

the right two if it contains a 1. The quantites X, 1, and 0 are stored at

the three intersections of the plated wire and interrogate wire occurring in

each cell as shown above.

Consider first the logic function performed by the cell for an inequality

search. Assuming that the output from each storage element is

IN TERROGATE CURRENT

STORED 1

STORED 0

i i I I

I I I I
I I i I

I I I._,.I
I

I I I I
I I i I
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and that adjacent elements are sufficiently uniform so that a 1 and 0

interrogated simultaneously will cancel each other out, the following

output signals are obtained.

Input Combination

S X

Output

0 0 No signal

k/--

1 0 __U___A____

1 1 No signal

If we assume that only the first position of the bi-polar output is recognized,

this is seen to satisfy the requirements defined for the inequality search.

This same cell can produce the outputs required for an all-parallel equality

search by simply turning on the interrogate current in those bit positions

of the search word containing l's prior to the search operation. The actual

search is performed by simultaneously turning off interrogate currents

corresponding to 1 's in the search word and turning on interrogate currents

corresponding to O's in the search word. This will produce the following:

Input Combinations

S X

Output

0 0 No signal

0 i --_/_.__._

kJ--

_A1 0

I,.I

1 1 No signal
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Another slight change will provide the logic function required for arithmetic

operation. By simply inverting the contents of the operand register prior

to interrogation and by performing the interrogation as for the inequality

search, the following logic function is performed:

Input Combination

S X

Output

0 0 __

\J

0 ] No signal

1 0 No signal

This can be seen to be one of the logic function requirements for arithmetic.

The other one was the generation of the same set of outputs with two stored

quantities, A and C, serving as the inputs. The use of the three storage

locations within the cell to perform this function is as shown below:

! 2

C! A CI+1
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The logic is performed by simply interrogating pair 1 or pair 2 depending

on which is the appropriate C. The signals generated are

C A Output

0 0

0 1 No signal

1 0 No signal

1 1

which is the desired output.

The field add can also be performed, with allocation of cells and storage

elements within the cell as follows:

OPERAND REGISTER

•,, f
J WORD

S! I $2

ol ,.I o!.

X1 Y1 X_ • N

I
I I

!

II

1 t

J

S
m

oI 1

I
!

!
RESULT

• STORE

Cl+l _

I
I

The Operand Register is initially set to 0 with Sm alternating between

0 and 1 for each bit of addition performed.
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The SCANCELL provides another unique and useful capability --that of

storing adon't care. With a don't care stored in the cell, regardless of

which pair of storage elements is interrogated, the output of the cell is

• I!

"no signal . The storage of a don't care is shown below:

word basis, rather than simultaneously for all words as is done by using

the mask register. Such a capability is useful in some types of pattern

recognition problems.

Integrated circuits can be used in this approach much as in Approach 3.

The cell becomes slightly more complicated but otherwise the technique is

very similar. Similar advantages occur for small size memories and

similar power penalties must be paid. Cryotrons can also be used as in

Approach 3 and with similar advantages and problems.

Approach 5 - Intercommunicating Cells

Description

The next step in increased capabilities in an associative memory is to

provide the capability of passing results directly from one cell to the

next. To fu!!y utilize this intercommunicating capability, the cell contains

the logic necessary to perform an add operation. This logic can also

provide the type of output needed for an all-parallel equality search and
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the ternary o_tput signal needed for the i1_,equalitysearch. The full adder

per cell and ,ntercommunicating cells set-to to go hand in hand as will be

seen in the description of arithmetic capabilities.

t_ block diagt am of this approach is shown in Figure 3-8. The array of

such cells can be written-into and retd-h'om in either the bit slice or word

slice modes. Also since each cell ht.s a mmber of d_fferent functions to

F_erform, col_mand information musl be cistributed to each cell. In all

t:rev±,Jus app,-oaches the command in='ormation was used only on the periphery

of the array since the cell performea the same way fcr all operations. The

list of ,:omm:mds might include store, read, compare, add, shift (right or

left), and complement. The coxnmand_ are assumed to be provided

simultaneously to all cells of a column. Of course any row of cells can be

masked out for a given command.

Each internal cell in the array can communicate directly with its two

nearest neighbors in the row. However, additional intercommunication

can be obtained by using the row (word) output line as an input line to the

cell for certain commands. For instance consider the requirement to

shift the contents of the right-most column to the left-most cohmn in

Figure 3-8. This can be done in one operation by supplying the read com-

mand to all cells m the right column and a "special store" command to

cells in th_ Icit column. This "special store" command will cause the

cells to sh_re the contents of the row output line. This capability is also

useful f_r _lt_e. _' operations.

Capabilities

Equality, Inequality, and Maximum (minimum} Searches -- Since the

ultimate in speed of performance of these searches was achieved in

previously described approaches, the cellular intercommunications

capability provides no improvements.
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COMMANDS- TO CELLS ON A COLUMN BASIS

A
f

INPUT AND OPERAND REGISTER

! I ..,,.. ,,.,-_,,.. I 1
j ............... _j RESULTS

STORE

INPUT

(BIT SLICE)
OUTPUT

(BIT SLICE)

FROM

RESULTS
STORE

l

I I I I
I I '""'¥ °_ I I
I I CELLS I
I I I I

OUTPUT REGISTER

- [ 1

TO
WORD

SELECTORS

MISCELLANEOUS
OUTPUTS

Figure 3-8. Approach 5 - Associative Memory With

Intercommunicating Ceils
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Proximity Search -- This search must ag_=in be carried out by counting

the number of mismatches and performing a minimum search ovel the final

counts. Thus the improvement in performing this operation is directly

proportional _o the improvement in counting.

Intersection o:" Searches -- The inter_ecti,m of searches is again performed

in the same w_y as in Approach 2.

Union of Sear,:hes -- The capability o.' usillg any colurnn of cells w__thin the

array to rece_ve the results of a search operation on other columns provides

an advantage for a union of searches operation. This ,_ffectively allows

the use of any column as a Results Stor_ and these e!i:ninate._ the need for

transfer from the results store to the array as was required in all other

approaches.

...... + S) -- The use of theAddition (X 1 + S, X 2 + S, X 3 + S, , X n

intercommunications capability for the add operation is to propagate the

carry signal from the least significant end. The contents S of the operand

register are _imply applied to the array and those words which are active

w:ll proceed to carry out the add by starting at the least significant end.

Each ceil, having received the operand bit and the carry-in fronl the

neighbor to the right, will generate a sum bit Z which will replace the

stored bit X, and will generate a carry bit to be transmitted to the

neighbor _Jllthe left. Thus the operation is performed as rapidly as the

carry can propagate.

It can be noted that cellular intercommunications from right to left only is

sufficient for this operation.
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...... + Yn ) -- This operationField Addition (X I + YI' X2 + Y2' • Xn

is carried out by making use of the row (word) output line as an input line

to transfer the ith bit of ¥ to the cell containing X. The add operation,
i

X i + Yi-_Zi , is performed with the sum bit Z i replacing X i and the carry

Ci+ I being transferred to the cell on the left.

Counting -- Counting is performed in the same way as the centralized add

where the operand will contain a single one in the position corresponding

to the least significant bit of the counter, and O's elsewhere.

Shifting -- Assuming that the storage element is the equivalent of a double

rank flip-flop, the shift operation is performed by simply providing the

proper shift command to the columns to be shifted. A shift left command,

for example, will cause the cell to output its contents to the cell on its

left and to store the input received from the cell on its right.

Complement -- It is assumed that a cell would have the capability of

complementing its contents on command, thus avoiding the reading and

re-writing required in previous approaches.

Me chanization Considerations

Requirements -- The cells in this approach have the capability of storing

a single bit of data and also include a full adder. The most severe require-

ments, however, is that the cells be able to communicate with each other.

Device Considerations -- The addition of intercommunication between cells

to the local logic associative memory constitutes a major change. The bit-

iterative operations that depend on a carry propogation no longer are speed

limited by the bit access time - the speed of the local logic elements is the

prime factor in this case.
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Integrated circuit elements and cryotrons can again be employed in a

similar manher to that of Approaches 3 and 4. Since the carry propogation

time of cryotron circuitry depend on a time constant rather than on the

switching speed of cascaded elements, the operating speed of a cryotron

associative memory should be about the same as that of an integrated

circuit memory - possibly even greater.

In this approach circuit elements such as the tunnel diode would be capable

of realizing their inherent speed capabilities. This was not possible in the

previous approaches because of the speed limitations of the accessing

circuitry. Many types of logic circuits employing tunnel diodes have been

proposed and at least one of these shouid be ._--_*-_1_,,= for memory applica-

tions. Attempts to integrate tunnel diodes on monolithic chips have

recently met with some success. This would tend to reduce the high cost

of these devices and possibly increase the uniformity of characteristics.

In either the discrete element or integrated circuit case, the size of a

tunnel diode memory and that of integrated circuit bi-polar transistor

would be restricted to small size units; larger memories would probably

be constructed with integrated circuit field effect transistors or cryotrons.

The major hope for very large (greater than 10,000 words) associative

memories with local logic and intercommunicating cells lies in the

cryotron. Since the cryotron exhibits true zero resistance in the super-

conducting state and a very low resistance in the normal state, the total

power dissipation is extremely low. The small element size and direct

compatability of memory and logic elements permits extremely complicated

logic structures to be included in each cell. Either of two types of memory

elements can be employed - the cryotron flip-flop or the persistent current

memory element. The latter type is non-volatile in a certain sense; the

memory contents is not destroyed when the logic power fails as long as

the temperature of the memory remains within a certain range. The speed
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of a cryotron memory should be in the same range as that of magnetic

memories, i.e., read speeds of 0.1 to 5. 0 microseconds depending on

size. Production difficulties have so far prevented the economical

construction of cryogenic memory planes, but the recent application of

integrated circuit construction techniques appears to have solved some

of these problems. Other problem areas involve the interface with the

outside environment and the economics of maintaining cryogenic

temperature s.

SUMMARY OF ORGANIZATIONAL APPROACHES

The associative memory organizational approaches described in this

section are summarized in Table 3-1. Each approach is described in

terms of a set of computation descriptors, in terms of its searching and

processing capabilities, and in terms of the devices suitable for its

mechanization.

The entries used in the capabilities portion of the table are to give an in-

dication of the relative capability of each organizational approach for each

of the searching and processing operations. The larger the number the

faster an operation can be performed. It can be noted that the largest

number is a five, which is the entry for all operations for Approach 5.

Thus all other associative memories are rated relative to Approach 5.

The device used to mechanize a given approach has no effect on this

number; it is rather effected primarily by the algorithm that must be used

to carry out the operation.

The three entries used in the devices part of the table are an indication of

the size associative memory that could be realized by a given device. A

small memory of 1,000 words or less is designated by an S, a medium

memory from 1,000 to 10,000 words by an M, and a large memory of

more than 10,000 words by an L. The absence of an entry indicates that
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Table 3-1. Summar,

ORGANIZATIONAL

APPROACHES

Minimum

Associative

Memory

Associative Memory
with bit slice

writing

Associative Memory

with All- Parallel

Equality Search

Associative Memory
with Ternary Output
from Cell

Associative Memory with
Intercomlnunicating Cells

Cell

Characteristics

_= ...._ o..

_ __ _._ _,

0 _:0 _

1 X

la X

Ib X

2 X

2a X

2b X

2c X

3 X X

3a X X

3b X X

4 X X X X

5 X X X X X X

ORGANIZATIONAL DESCRIPTORS

External

Writing Reading Access for

Mode Mode Processing

X X X

X X

X X X

X X X X

X X X X X

X X X X

X X X

X X X X

X X X

X X X X

X X X X

X X X X

Logic

per Word

O

2

X X

X X

X X

X X
X

X X

X

X

X

X

X

X

External

Storage Search

per Word Operations

5
_ _ .-

X 22515
X 22515

XX 11 3

X 22535

X 22535

X 11325

X 11115

X 54535

X 54515

X 53525

X 55535

X 55555



3-73

T of Crganizational Approaches
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L S

L S

L S

S M ML S L S
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Read Only Cyclic Access
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o_
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m

__ _ _

ML ML ML ML ML S ML ML

M ML ML S
ML ML ML ML ML S ML ML

ML ML MLML ML ML ML M S ML ML ML

ML MJ_ MLML ML ML .%_J_ M S ML ML MJ_

ML ML MLML ML ML ML M S ML ML ML

S M ML ML M

ML M ML ML

ML M ML ML

ML M ML NIL
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a device would probably not be considered for that organizational approach.

For instance the monolithic bipolar integrated circuit is not considered for

the minimum associative memory, not because it couldn't satisfy the re-

quirements, but rather because it fits the requirements of an associative

memory employing local logic much better. It can also be noted that not all

the devices described in the survey of Appendix B are included. Dere'ices were

excluded from this table for one of two reasonsmthe device was given a con-

fldence level of 6, 7, or 8 in the survey, or the device did not appear to com-

pare favorably with other available devices for any of the organizational

approaches.
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SECTION IV

INVESTIGATION OF SPECIAL APPLICATIONS AND

APPROACHES

The computation requirements for unmanned space vehicles were summarized

in Section II. A number of conclusions were drawn which point to problem

areas where associative memories can be expected to be applicable. Taking

these conclusions into consideration, a number of subtasks have been

identified and are listed below:

Xo Investigate the use of an associative memory for incremental

computation such as is required in navigation and control functions.

. Consider the use of associative techniques for compression of

pictures. A two-level associative memory looks promising for

this task.

o Investigate associative techniques to provide an adaptive sampling

capability for both analog and digital quantities.

. Consider the organization of an associative memory aimed at the

sum of products computation.

. Investigate the use of associative techniques to handle (executive)

control functions in a multi-processor system. In this case it is

assumed that the on-board computer facility is a multi-processor

system, which is reasonable in view of the reliability requirements.

8. Consider methods of making an associative memory ultra-reliable.

Only items i and 6 have been examAned to any extent at this time. Discussion

of these two subtasks follows:
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AN ASSOCIATIVE MEMORY FOR INCREMENTAL COMPUTATION

It has been assumed that a strapped down attitude reference system employ-

ing a set of laser gyros would be used as the basis for the navigation and

control system for the lander. Most of the computations that must be per-

formed by this system are of the incremental type, many of which must be

performed at a high rate. Fortunately, most of these computations can be

done in parallel rather than sequentially and it is therefore practical to

construct a series-parallel special purpose incremental computer to do

this job.

It may however be desirable to use an associativ_ memory to do these

computations. First of all, although the associative processor would

probably contain more elements than an incremental computer designed to

do the same job, the nature of the associative processor - a large network

of identical elements - may make a low cost batch fabrication process

possible. In that case the associative memory may be less expensive than

the incremental computer. Furthermore, if there is to be an associative

memory in the lander for the purpose of processing data obtained during

the performance of scientific experiments after the landing phase, it would

be available for the navigation and control function during the landing phase.

Incremental computation is usually performed by suitably interconnecting a

number of digital integrators. Each integrator computes according to the

formula AZ = k Y AXwhichwhen summed forms _AZ = Z = k_,YAX.

This sum is an approximation to the integral Z = k ]ydx.
1

The digital integrator consists of three major parts - a Y register connected

as a counter, an R register and adder-subtracter connected as an accumulator,

and the necessary logic for generating the A Z and controlling the counter and

accumulator from the A X and A y inputs. Figure 4-1 is a block diagram of a

typical integrator configuration. Although binary (two valued) increments are
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4Z. kY_X

HLOGIC

Figure 4-1.
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AX

I Y REGISTER I

J CTR,LOGIC &Y

Block Diagram of an Integrator for an
Incremental Computer
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sometimes used, ternary (3 valued) increments are much more common

and will be assumed in this application. The three possible incremental

values are + 1, 0, and - 1. Means must be provided to add several _Y

increments into the contents of the Y register. This can be done either

sequentially or in parallel. Addition of a single increment to the Y register

requires counting up by 1, no change, or counting down by 1. Addition of

more than one increment may require several counts. The R register is

updated by either adding Y to R, leaving the contents of R unchanged, or

subtracting Y from R depending on the value of A X. If this is done after

the Y register is updated with the most recent A Y, the new value of Y is

used; if it is done before the Y register is updated, the old value of Y is

being employed. The A Z increment consists merely of the overflow or

output carry (or borrow) of the R register. It is sensed after each

R + Y operation and then encoded and stored for later use as either a _X

or _ Y input to other integrators.

Scaling consists of aetermining the proper values for the constant k asso-

ciated with each integrator and modifying the integrator such that the output

_Z = kY AX. If k can be made equal to a power of two, the scaling process

can be implemented by selecting the proper position in the X register in

which to add the Ay increment. In the few cases in which k is not equal to

a power of two a separate integrator is used as a constant multiplier. A

constant k is placed in theY register and the Ay increment is connected to

the AX input resulting in an output of AZ = k Ay.

An incremental computer can either be programmed to approximate the

solution of a differential equation or, as is more common in present day

practice, to solve a difference equation which may in some cases approxi-

mate a differential equation. In either case, the programming is accomplished

by connecting the _ Z outputs to the proper AX and _ Y inputs such that the

resulting integrator configuration is constrained to solve the proper equation.

1 2017 IR1
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Two approaches to performing incremental computation have been examined.

Either word slice or bit slice processing may be used and each method has

unique advantages and disadvantages. The bit slice processing procedure
will be described first.

A bit slice associative memory is arranged such that a given bit of all the

words in the memory is processed at a particular time. The proposed word
structure for a bit slice processor which is to be used for incremental com-

putation is shown in Figure 4-2. There are a total of eight different fields

in the word. Four of these fields are used to store the Y and R registers

and the _X and A y increments. Since it is generally required that an

integrator accept several A y lnputspprovisions for these multiple A Y

inputs are included in the AY field. As previously stated ternary increments

are used thus requiring two bits for the storage of each A X and each _Y.

The following coding scheme is proposed for the two sets of increments.

ab A

O0 0

01 +1

10 -1

! ! not used

This method of scaling facilitates searching first for positive increments

and then for negative increments or vice versa. It also facilitates modifica-

tion of the processing order by the sign of the increment as will be described

later.

The four remaining fields are somewhat unconventional and require a more

detailed explanation of their purposes. The scaling control bits are used for

scaling the various integrators. This is done by first searching the first bit

location in the field for ones and then adding or subtracting an increment to

all of the Y words which have a one in this position. If there is more than

12017 IR1
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one _ Y at any of these positions they must each be added sequentially. Then

the second scaling bit location is searched for ones and the process is repeated

until all of the scaling bits and A¥ bits have been searched. Notice that con-

siderable time can be saved in this type of memory operation if a very rapid

parallel search is available and if its results can be used to eliminate the

succeeding steps whenever there are no matches in the search. Thus another

desirable feature would be a rapid, parallel "no match" indicator which would

sense this condition and immediately cause the processor to search the next

bit location.

In some algorithms certain sets of integrators must be processed sequentially

because of the nature of the difference equation being solved. The oL-der of

processing depends on whether the particular part of the equation being con-

sidered calls for the use of the old value of Y or the new value of Y. The old

value of Y corresponds to the contents of a Y register that has not been up-

dated during the present iteration perioc_while the new value of Y corresponds

to the contents of a Y register that has been updated. The natural method of

operation of this type of associative memory results in the consistant use of

the old value of ¥ since the integrators are processed in parallel. Therefore,

in order to use the new value of Y it is necessary to set aside one of the

memory word fielcls to esiabli_h ......t**_u_ ,..,_'_-,_,.,.,_4',-,_;_+_g_c,+nv',_ _h_t must be pro-

cessed sequentially. These bits are so indicated in Figure 4-2.

It is sometimes necessary to modify the processing order of sequentially

processed integrators depending on the sign of the AX increment, or other

criterion. This modification is obtained by means of logical operations

performed on the processing order bits and on the AX bits. A single

control bit has been added for this purpose. It permits a specified criterion

to control the processing order. If more than one criterion is to be used

additional control bits must be added. Some algorithms also require that

the order of processing the Y and R registers be interchanged. An additional

control bit has also been added for this purpose.
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Many problems have been encountered in this attempt to use an associative

memory to perform incremental computations. Up to this point all of these

problems have been solved by the addition of extra bits to the memory word.
Some of these bits contain data, others contain control information. One

additional problem remains, however, that is not as easily solved. This is
the problem of programming the processor to solve different sets of

difference equations. Programming an incremental computer consists of
merely directinz_ the AZ overflows which are sensed at the end of each Y + R

addition and stored at the output of the memory (or internally if desired} to

the proper A X and A Y locations in other words of the memory. Of course

if several AZ increments are to become A Y increments for a given word

they must each be directed to a separate A y _* ..... 1_,,_1-inn with the

word. It has not been found possible to solve this problem by the addition

of bits to the memory word. In fact, the only solution that is apparent at

the present time consists of an external logic network which could be

modified by a plug board arrangement to change the programming of the

associative memory. One example of how this might be done is sketched

in Figure 4-3.

The actual computation rate of an associative memory programmed to

pertorm incre_,vl,tal _v..,w_._*_÷_n:...... .H_nends. on the search and write speeds

of the processor and on the method of performing the computations. If it

is assumed that a write operation requires approximately twice as much

time as a search operation, a search speed in the range of 100 to 200

nanoseconds will probably be required to do the navigation and control

computations. This figure was obtained by estimating the number of

search operations (approximately 1 700), and then calculating the required

search speed for an assumed computation iteration rate of 3000 to 6000

per second. The resulting search speed appears to be within the range

obtainable from a number of potentially useable memory elements.
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The previous discussion has pertained to a processor organization in which

bit slice processing is employed. It is also possible to arrange the words

in the memory in such a way that word slice processing is employed. The

memory structure for an organization of this type is diagramed in Figure 4-4.

In this organization integrator processing is inherently sequential while

operations on a given word or pair of words are performed in a parallel-

by-bit manner. Assuming a sequential processing of the integrators, in the

order of their location in the memory, it is possible to use either the old

value or the new value of Y by proper location of the integrators and by

proper programming methods. It is difficult however, to vary the order

of processing depending on the sign of one of the input or output increments

or some other parameter. This would either require some uu,,L},_,,_=_,.,_

control logic in the sequencing and programming sections of the processor

or else it would require the storage of the data and control bits for more than

one integrator in a given column of the memory.

Updating of the Y register is performed by reading out the contents of the

register along with the associated A Y increments and the scaling bits, de-

coding the scaling bits, and then adding the ,% Y increments to the Y register,

one at a time, by means of a parallel adder. The R register is updated by

reading ou_ d,_ K and Y r_gistcr_ and the _ X increment, performin_ the

required addition or subtraction, and rewriting the new contents of the R

register. Programming is also a severe problem with this type of memory

organization unless a two dimensional search is available. If this feature

is available a set of rows could be set aside in the memory for programming

purposes, two for each of the integrators. After a particular integrator is

processed the corresponding programming row could be searched and the

,% Z could be written into'each of the ,% Y locations corresponding to a 1 in

the first of the rows and into each of the ,%X locations corresponding to a 1 in

the second of the two rows. A serious problem arises in that it would be

difficult to know which of the A y locations to write into since one must be able

to distinguish between an old A y which is to be replaced and a newer ,% Y

which was previously written during the same iteration of the memory.

12017 IRI



4-11

w 1 w 2 W3

I
I

Y i
J

I

R iI
i
I

Z_X

_Y1

I
i
I
I
I

_Yn I

I
I

SCALING
CONTROL 1

Figure 4-4. Memory Arrangement For a Word Slice
Associative Memory Used For Incremental
Computation

12017 IR1



4-12

Each of these two methods of performing incremental computations in an

associative processor has particular advantages and disadvantages. The

first mechanization is most suitable for a computation that requires a

large number of integrators, since the integrators are processed in more

or less a parallel fashion while the bits are processed sequentially. Most

of the necessary control functions can be readily performed by means of

searches on special fields contained within the word. Programming,
however, presents a problem and it appears that an external plugboard

programming unit may be required. The second organization is more

suitable for a computation requiring only a small number of integrators
since the integrators are processed sequentially while operations on a

given word are performed in parallel. All of the necessary control

functions except for variation in the processing order and programming

can be readily performed by means of special fields in the memory word.
It might be possible to devise reasonable solutions to both of these

problems if both a horizontal and a vertical search instruction were

available. This brief investigation of the capabilities of an associative

memory as an incremental computer has resulted in quite reasonable

solutions to most of the problems involved in the outlook is certainly

optimistic. It is expected that further investigation of the problems could

result in feasible solutions to the remaining problems.

SOME CONSIDERATIONS IN THE ORGANIZATION OF AN ULTRA-RELIABLE
A SSOCIATI VE ME MORY

An ultra-reliable associative memory is defined as one which can detect a

failure and continue operating (possibly with reduced capabilities}. In the
event of a failure, the loss of the information in the failed cell or failed
word is allowed.

,,-_- consldering the problem of error detection, various approaches to

organization of an associate processor can be divided into two groups --

those without logic in the cell, and those with the logic distributed
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throughout the memory. The techniques available for error detection are quite

different in these two cases.

Consider first the associative memory with logic distributed throughout the array.

Since the logic functions are performed locally, the error detection function must

be distributed. Coding techniques can in general be excluded because of the local

logic and the difficulty when masking is used. Duplex or majority logic at each

cellare.examples of methods that could be used. This would have an appreciable

effect on the cost and power requirements.

In the type of associative memory without distributed logic, the problem of

detecting errors becomes a less formidable one. Since all the masking and

processing is performed external to the array, the array itself can be checked

with a simple parity or with a slightly more complex residue check code. The

logic external to the array can then be made ultra-reliable by using redundancy

techniques. Since this redundancy is required only on a per word basis rather

than a per cell basis, the effect in terms of cost and power would probably not be

prohibitive.

Once a fault has been detected, some provision must be made for by-passing it.

A fault along a word line would not appear to be a serious problem; that word mu_

simply be excluded from search operations and must be avoided when loading the

memory. However a fault along a bit line is a potentially more serious problem.

One organizational feature that is worthwhile considering is a bi-directional

capability. In this case operations can be carried out either along columns or

row. Thus words can be stored either in the column or the rows of the array. If

a fault were to occur such that one bit in every word could not operate properly,

the entire contents of the array could be rotated 90 ° so that the fault effects a

single word. This would imply that the memory is square (the number of bits per

word equals the number of ;_'ords) which would severely limit its application.

Thus bi-directionality of operations should be considered a worthwhile feature for

reliability only in special situations.
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These are some initial thoughts on the sub3ect of reliable associative memorit.s.

Some additional effort is planned in the remainder of ti:m study.
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SE CTION V

SUMMARY OF RESULTS AND
WORK TO BE DONE

The results of each of the tasks of the program have been described in previous

sections. A brief summary of these results is given here and tasks remaining to

be done are identified.

The computations required on an unmanned space vehicle were defined in terms

of a set of computation descriptors. The most frequently used computation

_ .... _t,_r_-_ was _h,_.... sum of products. The organization of an associative memory

aimed at this computation is planned.

A number of general observations were made regarding the space exploration

problem. First, there is a need for ad_ptive sampling of the scientific sensors

as well as performance sensors. The capabilities of an associative memory fit

this requirement sufficiently well to justify further investigation.

One of the most severe requirements on the on-board computing facility is for

data compression. The capability of collecting large amounts of data along with

a limited communications capability make it necessary to conslaer encoding a_d

filtering techniques to assure that only pertinent data is sent. Compression of

TV or radar pictures appears to be a particularly fruitful area and has been

selected for further investigation.

Another type of requirement is that of incremental computation. This is used

primarily in navigation and control of a lander vehicle. It has been shown that

an associative memory can handle the requirement. The significant point of this

result is that an associative memory, justified mainly for some other function,

could handle this function during its relatively short duration and thus eliminate the

special purpose hardware which would normally be furnished.

Another somewhat indirect observation concerning the on-board computing facility

is the reliability problem. This has generated two subtasks, one of which is
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partially completed. First, to achieve the ultra-reliability that the computing

facility must have, it is assumed that it will be a multi-processor system. In

such a system associative memories have been shown to be applicable to a number
of the control functions. Therefore, this application will be given some attention.

Also, the possibility of a centralized associative memoPy in the system places

very stringent reliability requirements on it. Hence, some thought has been given

to the organization of an ultra-reliable associative memory.

The emphasis in the remainder of the study will be on the special applications
identified above. Also to be done, however, are two other tasks -- Task 4 -

Evaluation of Associative Techniques for Space Exploration Computation, and

Task 5 - Device Recommendations (see page 1-1). The first of these will use the

outputs of Task 2 - the Survey of Organizational Approaches and Task 3 - The

Examination of Special Applications and Approaches. Each approach will be

evaluated in terms of its effectiveness on the computation requirements defined

in Task 1. The final task, the device recommendations, will be made by making

use of the results of the device survey. Device recommendations will be made by

considering the results of the evaluation and the status or confidence level of

applicable devices. It is expected that a small number of devices can be singled

out as being parti_:u!__ri!ypromising for space exploration requirements.
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